<table>
<thead>
<tr>
<th>Beam</th>
<th>Size</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Beams shall be connected to the slab top using shear keys. The depth of the shear keys shall be the same as the thickness of the slab. The top surface shall be beveled to match the slab.
2. The longitudinal reinforcement shall be continuous over all construction joints at beam support points to ensure the structural integrity of the slab.
3. If expansion joints or supports are required, the edge shall be beveled to match the slab.
4. For a beam to be supported by an expansion joint or support, the length of the beam shall be adjusted as needed.
5. The number of beams in a concrete traffic slab shall be calculated as follows:
 \[\text{Number of Beams} = \frac{\text{Span Length}}{16.0} \]
6. The number of beams in a concrete traffic slab shall be calculated as follows:
 \[\text{Number of Beams} = \frac{\text{Span Length}}{20.0} \]

Diagram:
- Beam 1: 20.0 ft x 30.0 ft
- Beam 2: 5.0 ft x 10.0 ft
- Beam 3: 4.0 ft x 10.0 ft

Details of Bent Reinforcing Steel:
- [Diagram showing bent reinforcing steel details]