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1 

Executive Summary 

This research investigated the reduction in scour downstream of a broken-back 

culvert by forming a hydraulic jump inside the culvert. A broken-back culvert is used in 

areas of high relief and steep topography as it has one or more breaks in profile slope. 

A broken-back culvert in the laboratory represents a 1 (vertical) to 2 (horizontal) slope 

after the upstream inlet and then continues 90 feet at a 1 percent slope in the flat part of 

the culvert to the downstream outlet. The prototype for these experiments was either a 

two-barrel 10-foot by 10-foot, or a two-barrel 10-foot by 20-foot reinforced concrete 

culvert. The drop between the inlet and outlet was designated to be chosen to be 30 

feet. Three flow conditions were simulated, consisting of 0.8, 1.0 and 1.2 times the 

culvert depth.  

The Froude number of the hydraulic jump created in the flat part of the culvert 

ranged between 2.53 and 5.56. This Froude number classified a jump from an 

oscillating jump to steady jump. The jump in the experiments began nearly at the toe by 

placing sills and friction blocks of different sizes in the flat part. For new culvert 

construction, the best option to maximize energy dissipation under open channel flow 

conditions was to use one 5.83-foot sill located 33.33 feet from the outlet. The maximum 

length of the culvert can be reduced by 25 feet to 30 feet. Also, for existing and new 

culverts, the best option for end sill is to use 6.67-foot end sill height under open 

channel conditions. In pressure flow conditions, the optimal location was determined to 

be a distance of 31.67 feet from the outlet for a 4.17-foot sill. The length of the culvert 

can be reduced by 25 to 30 feet.  

For a modified slotted sill, the best option to maximize energy dissipation under 

open channel flow conditions was to use one 5.83-foot slotted sill located 33.33 feet 

from the outlet. The maximum length of the culvert can be reduced by 25 to 30 feet. For 

sill placement at the end of the culvert a 7.5-foot sill is optimal. In pressure flow 

conditions, the optimal location was determined to be at a distance of 41.67 feet from 

the outlet for a 5-foot sill. The length of the culvert can be reduced by 25 to 30 feet, and 
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for the end slotted sill is to use 4.17-foot height under pressure flow conditions. Such a 

scenario is important where right-of-way problems exist for culvert construction.   

The sills contain two small orifices at the bottom to allow the culvert to completely 

drain. The slotted sill has a cut in the middle and contains two small orifices at the 

bottom of the other parts to allow the culvert to completely drain and to use the middle 

cut to clean up the sedimentation behind the slotted sill. The impact of friction blocks 

was found to be minimal. Different friction blocks examined experimentally. It was found 

that a big size of friction blocks could make more impact in the energy dissipation.  

It was found that slotted sill experiments yielded results most applicable to the 

new and existing construction of culverts for open and pressure flow conditions. Adding 

friction blocks to a slotted sill did not significantly increase the energy dissipation with 

these experiments. It was found that the friction blocks represented only a 2% increase 

in the energy dissipation; therefore they are not economical or practical to the culvert 

design. Also, the culvert barrel could be shortened by reducing a section at the end of 

the channel where the water surface profile is more uniform. 
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1 Introduction 

A recent research study conducted by the Oklahoma Transportation Center at 

Oklahoma State University indicated that there are 121 scour-critical culverts on the 

Interstate System (ISTAT), the National Highway System (NHS), and the State 

Transportation Program (STP) in Oklahoma (Tyagi, 2002). The average replacement 

cost of these culverts is about $121M. A survey of culverts in Oklahoma indicates that 

the drop in flowline between upstream and downstream ends ranges between 6 and 30 

feet. Tyagi et al. (2009, 2011, and 2012) carried out five phases of these projects; the 

first phase of this research was performed for a drop of 24 feet, the second phase of 

this research was performed for a drop of 6 feet, the third phase of this research was 

performed for a drop of 18 feet, the fourth phase of this research was performed for a 

drop of 12 feet. The fifth and final phase was 30-foot drop. Each drop has its own 

optimum characteristics. Since the 30-foot drop height is different from the other 

heights, there will be a difference in the optimum sill location and sill height from other 

drop heights. 

This report represents Phase V of broken-back culverts with a drop of 30 feet. A 

drop of 30 feet was used in the laboratory model because it is highest drop within the 

project scope. Results of this research targeted maximizing the energy loss within the 

culvert, thus minimizing the scour around the culvert and decreasing the degradation in 

the downstream channel. This will reduce the construction and rehabilitation costs of 

culverts in Oklahoma. The project is supported by the Bridge Division, Oklahoma 

Department of Transportation (ODOT). 

 The purpose of this project was to develop a means for energy dissipation in 

broken-back culverts. Once created, energy dissipaters were experimented and 

analyzed to find the optimal energy dissipation, so that degradation could be minimized 

downstream. The purpose of a culvert is to safely pass water underneath the roadways 

constructed in hilly topography or on the side of a relatively steep hill. A broken-back 

culvert is used in areas of high relief and steep topography as it has one or more breaks 

in the profile slope. Culvert dimensions and hydraulic parameters for the scale model 
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were provided by the Bridge Division, ODOT (personal communication with R. Rusch, 

2007).  

 The research investigation included the following tasks: 1) Obtaining and 

reviewing existing research currently available for characterizing the hydraulic jump in 

culverts; 2) Building a scale model representing a prototype of a broken-back culvert 

150 feet long, with two barrels of 10 X 10 feet, and a vertical drop of 30 feet; 3) 

Simulating different flow conditions for 0.8, 1.0 and 1.2 times the culvert depth (d) In the 

scale model; 4) Evaluating the energy dissipation between upstream and downstream 

ends of the broken-back culvert with and without friction blocks of different shapes; 5) 

Refining the sill design for easy drainage of water from the broken-back culverts using 

regular and slotted sills; 6) Observing in physical experiments the efficiency of the 

hydraulic jump with and without friction blocks between the upstream and downstream 

ends of the culvert and the location of the hydraulic jump from the toe of the drop in the 

culvert; and 7) Preparing a final report incorporating the analysis of the hydraulic jump 

and the devices to create the jump and energy loss. These tasks are presented in the 

following sections.  
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2 Literature Review 

 The literature search was performed for hydraulic jump and Acoustic Doppler 

Velocimeter and the results are discussed in the following sections. 

2.1 HYDRAULIC JUMP 

 The hydraulic jump is a natural phenomenon of a sudden rise in water level due 

to a change from supercritical flow to subcritical flow, i.e., when there is a sudden 

decrease in the velocity of the flow. This sudden change in velocity causes considerable 

turbulence and loss of energy. Consequently, the hydraulic jump has been recognized 

as an effective method for energy dissipation for many years. There have been many 

studies carried out to explain the characteristics of the hydraulic jump. Some of these 

studies are summarized in the following paragraphs.  

 There are four basic regimes of flow: subcritical-laminar, supercritical-laminar, 

subcritical-turbulent, and supercritical-turbulent (Chow, 1959). Smith and Oak (1994) 

conducted experiments to determine the inlet efficiency of a culvert. They found that 

projecting a slightly larger frame of the culvert upstream increased inlet efficiency. This 

study was done on circular culverts and showed the relationship between inlet styles 

and inlet efficiency. 

 Pegram et al. (1999) conducted various experiments looking at skimming flow 

over stepped spillways. The turbulence associated with this study and the examination 

of model versus prototype scale impacts make it especially interesting in view of 

anticipated hydraulic jump. They found that a scale of down to 1:20 can accurately give 

results in a model highly indicative of prototype reactions. 

 Campbell et al. (1985) found that for supercritical flows the mass flow rate is 

controlled by the inlet conditions; but for subcritical flows the mass flow rate becomes 

controlled by the material properties of the flow and the channel declination. This 

indicates that sedimentation will be more likely in the subcritical flow after the induced 

hydraulic jump in the culverts of this study. 
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 Chanson (1996) discussed the occurrence of undular jump characteristics in 

culverts. He concluded that in standard culverts the flow can reasonably be predicted by 

using critical flow assumptions. He warned that this could not accurately predict all 

parameters in the culvert, but can be used for reasonable approximations in undular 

flow conditions. His study indicated the lack of experimental data in culvert studies at 

that time. 

 Stahl and Hager (1998) conducted various experiments analyzing hydraulic jump 

in circular conduits. They note that in jump conditions where the surface is not allowed 

to be free but becomes pressurized the characteristics begin to deviate from those in 

classical hydraulic jump. This deviation from classical hydraulic jump has prompted the 

study of extended height culverts as well as the observation of incomplete jump 

formation in typical box culverts with induced jump. 

 Ohtsu et al. (1996) evaluated incipient hydraulic jump conditions on flows over 

vertical sills. They identified two methods of obtaining an incipient jump: 1) increasing 

the sill height, or 2) increasing the tailwater depth until a surface roller forms upstream 

of the sill. For wide channels, predicted and experimental data were in agreement, but 

in the case of narrow channels, incipient jump was affected by channel width. 

 Mignot and Cienfuegos (2010) focused on an experimental investigation of 

energy dissipation and turbulence production in weak hydraulic jumps. Froude numbers 

ranged from 1.34 to 1.99. Mignot and Cienfuegos observed two peak turbulence 

production regions for the partially developed inflow jump, one in the upper shear layer 

and the other in the near-wall region. The energy dissipation distribution in the jumps 

was measured and revealed a similar longitudinal decay of energy dissipation, which 

was integrated over the flow sections and the maximum turbulence production values 

from the intermediate jump region towards its downstream section. It was found that the 

energy dissipation and the turbulence production were strongly affected by the inflow 

development. Turbulence production showed a common behavior for all measured 

jumps. It appeared that the elevation of maximum Turbulent Kinetic Energy (TKE) and 

turbulence production in the shear layer were similar. 
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 Alikhani et al. (2010) conducted many experiments to evaluate the effects of a 

continuous vertical end sill in a stilling basin. They measured the effects of sill position 

on the depth and length of a hydraulic jump without considering the tailwater depth. In 

the experiments, they used five different sill heights placed at three separate 

longitudinal distances in their 1:30 scaled model. The characteristics of the hydraulic 

jump were measured and compared with the classic hydraulic jump under varied 

discharges. They proposed a new relationship between sill height and position, and 

sequent depth to basin length ratio. The study concluded that a 30% reduction in basin 

length could be accomplished by efficiently controlling the hydraulic jump length through 

sill height. 

 Finnemore et al. (2002) stated that the characteristics of the hydraulic jump 

depend on its Froude number (Fr1). The Froude number is the ratio between inertia 

force and gravity force. They added that in order for the hydraulic jump to occur, the 

flow must be supercritical, i.e. a jump can occur only when the Froude number is 

greater than 1.0. The hydraulic jump is classified according to its Froude number. When 

Fr1 is between 1.7 and 2.5, the flow is classified as a weak jump and will have a smooth 

rise in the water surface with less energy dissipation. A Fr1 between 2.5 and 4.5 results 

in an oscillating jump with 15-45% energy dissipation. A steady jump will occur when Fr1 

ranges from 4.5 to 9.0, and results in energy dissipation from 45% to 70%. When Fr1 is 

above 9.0, a strong jump will occur with energy losses ranging from 70% to 85%. 

 Ohtsu et al (2001) investigated undular hydraulic jump conditions in a smooth 

rectangular horizontal channel. They found that the formation of an undular jump 

depends only on the inflow Froude number and the boundary-layer development at the 

toe of the jump. At its Froude number ranges, they found that the effects of the aspect 

ratio and the Reynolds number on the flow characteristics were negligible. Under 

experimental investigation, it was found that the upper limits of the Froude numbers 

range between 1.3 and 2.3 at the inflow. Furthermore, a Froude number of 1.7 was 

found to be the critical velocity point at which inflow was fully developed. They 

calculated the ratio thickness of the boundary layer to the depth of the toe of the jump to 

be 0.45 to 1.0, which agreed with predicted values from experimental results. 
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 Bhutto et al. (1989) provided analytical solutions for computing sequent depth 

and relative energy loss for a free hydraulic jump in horizontal and sloping rectangular 

channels from their experimental studies. They used the ratio of jump length to jump 

depth and the Froude number to compute the length of the free jump on a horizontal 

bed. Jump factor and shape factor were evaluated experimentally for the free jump on a 

sloping bed. To check the efficiency of the jump, they made comparisons with previous 

solutions by Ludin, Bakhmateff, Silvester and Chertoussove and found that the 

equations they derived could be used instead of their equations.  

 Gharanglk and Chaudhry (1991) presented three models for the numerical 

simulation of hydraulic jumps in a rectangular channel while factoring in the 

considerable effect of nonhydrostatic pressure distribution. The one-dimensional 

Boussinesq equations are solved in time subject to appropriate boundary conditions 

which numerically simulate the hydraulic jump. The results were compared to 

experimental data which indicate that four-order models with or without Boussinesq 

terms gave similar results for all Froude numbers tested. The Froude numbers ranged 

from 2.3 to 7.0. The MacCormack scheme and a dissipative two-four scheme were used 

to solve the governing equations subject to specified end conditions until a steady state 

was achieved.  

 Hotchkiss and Donahoo (2001) reported that the Broken-back Culvert Analysis 

Program (BCAP) is a simple but powerful analysis tool for the analysis of broken-back 

culverts and hydraulic jumps. The program is easy to understand, explain, and 

document, and is based on the energy equation and momentum equation for classical 

jumps. It is able to plot rating curves for the headwater, outlet depth and outlet velocity. 

Hotchkiss and Donahoo described a computer code capable of analyzing hydraulic 

jumps in the broken-back culvert. 

 Hotchkiss et al. (2003) described the available predictive tools for hydraulic 

jumps, the performance of the Broken-Back Culvert Analysis Program (BCAP) in 

analyzing the hydraulics of a broken-back culvert, and the current applications and 

distribution of BCAP. They conducted tests on the Broken-Back culvert made of 

Plexiglas® to assess the performance of BCAP in predicting headwater rating curves, 
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the locations of hydraulic jumps, and the lengths of hydraulic jumps. Hotchkiss et al. 

concluded that accounting for the losses within the jumps because of friction in 

corrugated metal pipes and more accurately predicting the locations of hydraulic jumps 

may both be improved by predictions of flow hydraulics within the culvert barrel. 

 The Utah Department of Transportation (UDOT) addresses aspects of broken-

back culverts and hydraulic jumps in the state’s Manual of Instruction – Roadway 

Drainage (US Customary units), Culverts (2004). This manual illustrates steps for the 

design of broken-back culverts which include: 1) Establishing a flow-line profile, 2) 

Sizing the culvert, 3) Beginning to calculate a supercritical profile, 4) Completing profile 

calculations, and 5) Considering hydraulic jump cautions. Section F of Appendix 9 of the 

manual covers aspects of hydraulic jumps in culverts, including: cause and effect, 

momentum friction, comparison of momentum and specific energy curves, and the 

potential occurrence of hydraulic jumps. The manual also takes into account the 

sequent depth of jump for rectangular conduits, circular conduits, and conduits of other 

shapes.  

 Larson, (2004), in her Master’s thesis entitled Energy Dissipation in Culverts by 

Forcing a Hydraulic Jump at the Outlet, suggested forcing hydraulic jumps to reduce the 

outlet energy. She considered two design examples to create a hydraulic jump within a 

culvert barrel: (1) a rectangular weir placed on a flat apron and (2) a vertical drop along 

with a rectangular weir. These two designs were used to study the energy reduction in 

the energy of the flow at the outlet. From these experiments, she found that both 

designs were effective in the reducing of outlet velocity, momentum, and energy. These 

reductions would decrease the need for downstream scour mitigation. 

 Hotchkiss et al. (2005) proposed that by controlling the water at the outlet of a 

culvert, water scour around the culvert can be reduced. The effectiveness of a simple 

weir near the culvert outlet was compared to that of a culvert having a weir with a drop 

upstream in the culvert barrel. These two designs were intended to reduce the specific 

energy of the water at the outlet by inducing a hydraulic jump within the culvert barrel, 

without the aid of tailwater. The design procedure was proposed after studying the 

geometry and effectiveness of each jump type in energy reduction. In this research, 
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they found the Froude number ranged from 2.6 to 6.0. It was determined that both forms 

of outlets are effective in reducing the velocity of water; hence the energy and 

momentum thus reduced the need for downstream scour mitigation.  

 The Hydraulic Design of Energy Dissipators for Culverts and Channels (July, 

2006), from the Federal Highway Administration, provides design information for 

analyzing and mitigating problems associated with the energy dissipation at culvert 

outlets and in open channels. It recommends the use of the broken-back culvert design 

as an internal energy dissipator. The proposed design for a broken-back culvert is 

limited to the following conditions: 1) the slope of the steep section must be less than or 

equal to 1.4:1 (V: H) and 2) the hydraulic jump must be completed within the culvert 

barrel. 

 According to this report, for situations where the runout section is too short 

and/or there is insufficient tailwater for a jump to be completed within the barrel, 

modifications may be made to the outlet that will induce a jump. The design procedure 

for stilling basins, streambed level dissipaters, riprap basins and aprons, drop structures 

and stilling wells is also discussed.  

 Pagliara et al. (2008) analyzed the hydraulic jump that occurs in homogeneous 

and nonhomogeneous rough bed channels. They investigated the sequent flow depth 

and the length of the jump which are the influence parameters of the hydraulic jump. In 

this research, they drew on the general jump equation to analyze the jump 

phenomenon. In analyzing the rough bed data, they were able to formulate a 

representative equation to explain the phenomenon. The equations found in their study 

may be used to design stilling basins downstream of hydraulic structures.  

 Hotchkiss et al. (2008) analyzed the accuracy of the following seven programs on 

culvert hydraulics: HY-8, FishXing, Broken-back Culvert Analysis Program (BCAP), 

Hydraflow Express, CulvertMaster, Culvert, and Hydrologic Engineering Center River 

Analysis System (HEC-RAS). The software was tested on the accuracy of three 

calculations: headwater depths, flow control, and outlet velocities. The software 

comparison was made between software output values and hand calculations, not from 

laboratory experimental data. The hand calculations used were derived from laboratory 
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experiments done by the National Bureau of Standards (NBS). Hotchkiss et al. 

concluded HEC-RAS is the most comprehensive program for both accuracy and 

features for culverts affected by upstream structures.  

 Tyagi et al. (2009) investigated hydraulic jumps under pressure and open 

channel flow conditions in a broken-back culvert with a 24-foot drop. It was found that 

for pressure flow, a two-sill solution induced the most desirable jump, and for open 

channel a single sill close to the middle of the culvert was most desirable. The 

investigation was funded by the Oklahoma Transportation Center, Research and 

Innovative Technology Administration, Federal Highway Administration, and Oklahoma 

Department of Transportation. 

 Tyagi et al. (2010a) performed many experiments for open channel culvert 

conditions. Optimum energy dissipation was achieved by placing one sill at 40 feet from 

the outlet for 24-foot drop. Friction blocks and other modifications to the sill arrangement 

were not as effective. 

 Tyagi et al. (2011b) carried out many experiments with a 24-foot drop to optimize 

flow condition and energy dissipation in a broken-back culvert under pressure flow. It 

was found that two sills, the first 5 feet high at 25 feet from the outlet and the second 

3.34 feet high at 45 feet from the outlet, gave the best results. The culvert could not be 

shortened since it was full under the tested conditions. 

 Tyagi et al. (2011) studied the energy dissipation in six-foot broken-back culverts 

using laboratory models. They stated that the Froude number for the experiments was 

1.8 – 2.3, which classified the hydraulic jump as a weak jump. For open channel flow 

conditions, the best option to maximize energy dissipation is to use 3-foot sill located at 

69 feet from the outlet of the culvert. The maximum length of the culvert can be reduced 

between 42 – 56 feet. Also, for pressure flow conditions, the optimal placement of one 

2.1-foot sill was located 42 feet from the outlet face of the culvert. 

 Tyagi et al. (2012) examined energy dissipation in eighteen-foot broken-back 

culverts using laboratory models. For open channel flow conditions, it was found that 

one 5-foot sill located 43.3 feet from the outlet was the best option to maximize energy 

dissipation. Also, the maximum length of the culvert can be reduced by 30 – 43 feet 
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(Tyagi et al. (2013)). For pressure flow conditions, the optimal location of two sills was 

determined to be 62 feet from the outlet for a 2.5-foot sill and 45 feet from the outlet of 

culvert for a 3.3-foot sill. The culvert length can be reduced by 40 – 45 feet. 

 Moawad et al. (1994) found that culverts are more susceptible to damage when 

fully submerged due to uplift around the inlet. They concluded that scour mitigation 

measures such as aprons should be placed at the inlet of the culvert due to the increase 

in deterioration of the culvert possible from this uplift aggravated by scour. 

Nettleton and McCorquodale (1989) studied the hydraulic jump induced in stilling basins 

by way of baffle blocks. They concluded that there is an optimal placement for the jump 

inducers: too close and a large hump will form, too far back and the jump length 

increases. They determined that a continuous end sill would produce better results, but 

their scope only covered the baffle blocks. 

 Acoustic Doppler Velocimeter (ADV) is a sonar device which tracks suspended 

solids (particles) in a fluid medium to determine an instantaneous velocity of the 

particles in a sampling volume. In general, ADV devices have one transmitter head and 

two to four receiver heads. Since their introduction in 1993, ADVs have quickly become 

valuable tools for laboratory and field investigations of flow in rivers, canals, reservoirs, 

the oceans, around hydraulic structures and in laboratory scale models (Sontek, 2001). 

 The flow rate was measured by an orifice plate between which measures the 

pressure difference in a fixed pipe opening size. An orifice plate is a device used for 

measuring the volumetric flow rate. It uses the same principle as a Venturi nozzle, 

namely Bernoulli’s principle that states that there is a relationship between the pressure 

of the fluid and the velocity of the fluid. When the velocity increases, the pressure 

decreases and vice versa. 

2.2 EFFECT OF FRICTION BLOCKS AND SILL IN BROKEN-

BACK CULVERT 

 Eloubaidy et al. (1999) found that in order to provide better stability and after 

running multiple series of tests to determine which floor block dissipates the most 
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energy, the curved blocks work the best. Different experiments tested various sizes, 

curvatures, and locations of the blocks. By choosing these blocks, optimum flow 

conditions are created lowering the capacity for erosion of the downstream bed. The 

curved blocks range from 3.2% to 33.3% more effective in dissipating excessive kinetic 

energy. 

 Bessaih and Rezak (2002) tried to determine how to shorten the length of a 

hydraulic jump; experiments were run with different cut ratios of baffled blocks. The 

blocks’ shapes will create strong vortices, which then shorten the lengths of the jumps. 

After completing the tests, it was shown that baffle blocks with a sloping face reduce the 

length of a jump up to 48% relative to the free jump, as well as up to 18% relative to 

USBR basin II. However, only an additional 5% decrease in length was observed when 

adding a second row, therefore adding an additional row is not very effective. 

 Oosterholt (1947) found that the total amount of heat generated and the 

decrease of the energy transport deviated greatly due to friction blocks. The surface 

roller dissipates the most energy in the lower part; energy dissipation also takes place in 

the upper part of the main stream. Continuing downstream, the energy dissipation 

slowly decreases. The surface roller’s upper part only contributes to a small amount of 

the energy dissipation. The bottom friction also makes only a small contribution to 

energy dissipation. 

 According to Habibzadeh et al. (2012), observed two flow regimes: the deflected 

surface jet and the reattaching wall jet, during the study. In order to get the best results, 

various block arrangements and submerged factors were tested, as well as a wide 

range of different Froude numbers. In order to determine the maximum submergence 

factor (S1) and minimum submergence factor (S2), empirical equations were derived. 

Using the empirical equations that were developed it was found that 85% of the time the 

flow regime was able to be predicted. It was found also that adding more blocks and 

adjusting their heights did not play a strong role in the energy dissipation. In order to 

create energy dissipation from baffle blocks, the flow needs to be in the deflected 

surface jet regime. 
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 According to Baylar et al. (2011), stepped chutes have become more popular 

over the years and are being used for gabion weirs, river training, and storm waterways. 

Not only are they low-cost but they have a speedy construction process. It was 

observed that aeration efficiency increases with the increasing energy-loss ratio. Nappe 

flow regime leads to greater aeration efficiency and has higher energy dissipation than 

the skimming flow regime. From their results came the conclusion that using the genetic 

expression programming method will result in a high rate when predicting aeration 

efficiency. 

 Meselhe and Hebert (2007) stated that culverts are very useful and common 

when trying to control hydraulic systems. In order to collect water level and discharge 

measurements a laboratory apparatus was used to simulate flow through culverts. In 

conducting the experiments, Meselhe and Hebert used circular culvert barrels as well as 

square culvert barrels. While measuring the stage-discharge relationship and the rising 

and receding limbs of a hydrograph, a noticeable difference was observed.  

 Jamshidnia et al. (2010) used a three-dimensional acoustic doppler velocimeter 

to investigate the effect of an intermediate standing baffle in a rectangular open 

channel. In the upstream baffle region, a peak structure was observed after analyzing 

the spaced-averaged power spectra of stream velocity. They also observed that a peak 

structure existed both up and downstream of the baffle. 

 Noshi (1999) determined that spillways, regulating structures, and outlet works 

often require stilling basins to achieve energy dissipation. His study estimates the 

maximum downstream velocity for near the bed, which is vital to know before 

construction in order to know what and how much materials are needed. For the flow 

conditions that were investigated, Noshi concluded that a sill height of .15 the tailwater 

depth can improve energy dissipation. It was concluded that using a greater end-sill 

height does not increase energy dissipation. The recirculation length is estimated to be 

about 2.3 times that of the water depth. 

 Varol et al. (2009) investigated hydraulic jumps in horizontal channels and the 

effects a water jet has. During the experiments, five different water jet discharges were 

used as well as Froude numbers ranging from 3.43 to 4.83. A high-speed SVHS camera 
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was used to analyze the jumps with jets and the free jumps. According to their findings, 

whenever the water jet flow increased this caused the hydraulic jump to move farther 

upstream. They also observed an increase in downstream depth (y2) and energy loss 

when they increased the water jet discharge.  Furthermore, roller length increased with 

increased water jet discharge. It was found that forced hydraulic jumps initiated by water 

jets had higher energy losses than free jumps.  

 Habibzadeh et al. (2011) conducted a preliminary study of the effects baffle 

blocks and walls have on submerged jumps. When testing the baffle block series, a 

range of submerged factors and five Froude numbers were tested on one configuration 

of baffle blocks. They found that the maximum energy dissipation efficiency of 

submerged jumps was greater than that of the free jump efficiency. 

 Debabeche and Achour (2007) researched the effect of placing a sill in a 

horizontal symmetrical triangular channel of 90° central angle. Using various flow 

conditions, they investigated the sill-controlled jump and the minimum-B jump using 

either a thin-crested or a broad-crested sill. In order to detect the effect of the inflow 

Froude number relative to the sill height, the data was fitted to empirical relations. They 

concluded that a reduced length is needed and a lower tailwater level is required when 

comparing it to a triangular jump basin.  

2.3 EFFECT OF SLOPES IN BROKEN-BACK CULVERT   

 Numerous studies have observed the characteristics of the hydraulic jump in 

sloping open channels. Husain et al. (1994) performed many experiments on the 

sloping floor of open rectangular channels with negative and positive step to predict the 

length and depth of hydraulic jumps and to analyze the sequent depth ratio. They found 

that the negative step has advantages over the positive with respect to the stability and 

compactness of the hydraulic jump. They developed a set of non-dimensional equations 

in terms of profile coefficient, and they used multiple linear regression analyses on 

jumps with or without a step. Using Froude numbers between 4 to 12 and slope, S, 

between 1 and 10 percent, the length and sequent depth ratio can be accurately 

predicted.  
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 Defina and Susin (2003) investigated the stability of a stationary hydraulic jump 

situated over a lane with sloping topography in a rectangular channel of uniform width 

with assuming inviscid flow conditions. On the upslope flow, it was found that the 

hydraulic jump is unstable and if the jump is slightly displaced from its stationary point, it 

will move further away in the same direction. In the channel with adverse slope, they 

indicated that a stationary jump can be produced. Defina and Susin calculated the ratio 

of bed to friction slope such as energy dissipation per unit weight and unit length, and 

the result was quite large. They found that the equilibrium state is weakly perturbed 

when the theoretical stability condition was inferred in terms of the speed adopted by 

the jump.  

 Li (1995) studied how to find the location and length of the hydraulic jump in 1o 

through 5o slopes of rectangular channels. He carried out many experimental laboratory 

models to get the relationship between upstream flow Froude numbers and ratios of 

jump length and sequent after jump L/y2. Li used the HEC-2 software to locate the heel 

of a hydraulic jump to get the length of the jump and toe of the jump. The scale between 

the models and the prototypes was 1:65.  Research concluded that an estimation of 

sequent depth for a hydraulic jump had to take the channel bed slope into account if the 

bed slope was greater than 3o. He found out that y2/y1 and Fr1 had linear relation and 

could be used to estimate the sequent depth. Also, Li recommended some rules such 

as using a solid triangular sill which could be arranged at the end of the basin apron to 

lift the water and reduce the scour from the leaving flow. He stated that if the Fr1 ranged 

between 4.5 and 9, the tailwater depth was lowered by 5% of the sequent water depth. 

2.4 ACOUSTIC DOPPLER VELOCIMETER  

 Acoustic Doppler Velocimeter (ADV) is a sonar device which tracks suspended 

solids (particles) in a fluid medium to determine an instantaneous velocity of the 

particles in a sampling volume. In general, ADV devices have one transmitter head and 

two to four receiver heads. Since their introduction in 1993, ADVs have quickly become 

valuable tools for laboratory and field investigations of flow in rivers, canals, reservoirs, 

oceans, around hydraulic structures and in laboratory scale models (Sontek, 2001). 
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 Wahl (2000) discusses methods for filtering raw ADV data using a software 

application called WinADV. Wahl suggests that ADV data present, unique requirements 

compared to traditional current-metering equipment, due to the types of data obtained, 

the analyses that are possible, and the need to filter the data to ensure that any 

technical limitations of ADV do not adversely affect the quality of the results. According 

to Wahl, the WinADV program is a valuable tool for filtering, analyzing, and processing 

data collected from ADV. Further, this program can be used to analyze ADV files 

recorded using the real time data acquisition programs provided by ADV manufacturers. 

 Goring and Nikora (2002) formulated a new-post processing method for 

despiking raw ADV data. The method combines three concepts, including: 1) That 

differentiation of the data enhances the high frequency portion of a signal which is 

desirable in sonar measurements; 2) That the expected maximum of a random series is 

given by the Universal threshold function; and 3) That good data clusters are a dense 

cloud in phase space maps. 

 These concepts are used to construct an ellipsoid in three-dimensional phase 

space, while points lying outside the ellipsoid are designated as spikes (bad data). The 

new method has superior performance over various other methods with the added 

advantage of requiring no parameters. Several methods for replacing sequences of 

spurious data are presented. A polynomial fitted to good data on either side of the spike 

event then interpolated across the event is preferred by Goring and Nikora. 

 Mori et al. (2007) investigated measuring velocities in aerated flows using ADV 

techniques. ADV measurements are useful and powerful for measurements of mean 

and turbulent components of fluids in both hydraulic experimental facilities and fields. 

However, it is difficult to use the ADV in bubbly flows because air bubbles generate 

spike noise in the ADV velocity data. This study described the validity of the ADV 

measurements in bubbly flows. The true three-dimensional phase space method is 

significantly useful for eliminating the spike noise of ADV recorded data in bubbly flow 

as compared to the classical low correlation method (Goring and Nikora, 2002). The 

results of the data analysis suggested that: 
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1. There is no clear relationship between velocity and ADV’s correlation/signal-to-

noise ratio in bubbly flow. 

2. Spike noise filtering methods based on low correlation and signal-to-noise ratio 

are not adequate for bubbly flow. 

3. The true 3D phase space method significantly removes spike noise of ADV 

velocity in comparison with the original 3D phase space method. 

 In addition, the study found that ADV velocity measurements can be valid for 1% 

to 3% air void flows. The limitations of the ADV velocity measurements for high void 

fractions were not studied.  

 Chanson et al. (2008) investigated the use of ADVs to determine the velocity in 

turbulent open channel flow conditions in both laboratory and field experiments. They 

demonstrated that the ADV is a competent device for measuring velocity in steady and 

unsteady turbulent open channel flows. However, in order to accurately measure 

velocity, the ADV raw data must be processed and the unit must be calibrated to the 

suspended sediment concentrations. Accurately processing ADV data requires practical 

knowledge and experience with the device’s capabilities and limitations. Chanson 

concluded that turbulence properties should not be derived from unprocessed ADV 

signals and that some despiking methods were not directly applicable to many field and 

laboratory applications. 

2.5 IDEALIZED BROKEN-BACK CULVERTS  

 A culvert is a channel or drain passing under an embankment, usually for the 

purpose of draining water from one side of the embankment to the other. Lately, 

culverts have come to mean more than just simple drainage pipes as the culvert has 

developed into concrete structures of many shapes and many types. Also, the culvert is 

used to divert water from beneath and away from an area, usually a driveway. It is used 

to prevent water from pooling and causing erosion, which can damage the existing 

surfacing and cause extensive costs to repair. 
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2.6 DIFFERENCE BETWEEN CULVERT, BRIDGE AND OPEN 

CHANNEL FLOW 

 The function of a culvert or bridge is to transport storm runoff (or other discharge) 

from one side of the roadway. Here are a few defining characteristics of specifications 

for culverts and bridges: 

- Bridge-structure must have at least 20 feet of length along the roadway 

centerline (National Bridge Inspection Standards, NBIS). Culvert structures that 

are 20 feet or greater are called bridge size structures. 

- The costs of culverts are less than those of bridges, there are many times more 

culverts than bridges, and the total investment of public funds for culverts 

constitutes a substantial share of highway dollars. 

- Culverts are usually designed to operate with the inlet submerged if conditions 

permit. This allows for a hydraulic advantage by increased discharge capacity. 

Bridges are usually designed for non-submergence during the design flood 

event, and often incorporate some freeboard. 

- Culvert maintenance requirements include efforts to assure clear and open 

conduits, protection against corrosion and abrasion, repair and protection against 

local and general scour, and structural distress repair. 

 

 Broken-back culverts can be classified as either single or double broken-back. A 

single broken-back culvert consists only of a steeply sloped section and outlet section 

whereas a double broken-back culvert is comprised of an inlet section, a steeply sloped 

section and outlet section as shown in Figures 1 (UDOT, 2004) (Hotchkiss and Shafer, 

1998). The elevation view of each culvert is found in Figure 1c and 1d. The layout of 

either type of broken-back culvert is important due to the nature of how the water 

behaves. This layout can force a hydraulic jump to form, which in return decreases the 

water velocity, and consequently decreases the amount of energy present that is 

available for water scour (Tyagi and Albert, 2008).  

 Singley and Hotchkiss (2010) studied the differences between open channel flow 

conditions and flow through a culvert. These differences in flow characteristics were 
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broken into four categories: geometry, sediment/debris, bed integrity, and aquatic life. 

Table A33 in the appendices was summarized the comparison between open channel 

and culverts. 

 

 

 

 Figure 1a. Two-Unit Broken-Back 

Culvert         

 

 

Figure 1b. Three-Unit Broken-Back 

Culvert. 

 

Figure 1c. Elevation view of single 

Broken-Back culvert 

 

Figure 1d. Elevation view of double 

Broken-Back culvert 

Figure 1. Types of broken-back culverts (Source: UDOT, 2009). 
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3 Hydraulic Similitude Theory 

 Similarity between a hydraulic model and a prototype may be achieved through 

three basic forms: a) geometric similarity, b) kinematic similarity, and c) dynamic 

similarity (Chow, 1959). 

3.1 BROKEN-BACK CULVERT SIMILARITIES 

 Geometric similarity implies similarity of physical form. The model is a geometric 

reduction of the prototype and is accomplished by maintaining a fixed ratio for all 

homologous lengths between the physical quantities involved in geometric similarity: 

length (L), area (A), and volume (Vol). To keep the homologous lengths in the prototype 

(p) and the model (m) at a constant ratio (r), they may be expressed as: 

 

 

 An area (A) is the product of two homologous lengths; hence, the ratio of the 

homologous area is also a constant given as: 

 

 A volume (Vol.) is the product of three homologous lengths; the ratio of the 

homologous volume can be represented as: 

 

 Kinematic similarity implies similarity of motion. Kinematic similarity between the 

model and the prototype is attained if the homologous moving particles have the same 

velocity ratio along geometrically similar paths. This similarity involves the scale of time 



 

22 

and length. The ratio of times required for homologous particles to travel homologous 

distances in a model and prototype is given by: 

 

 The velocity (V) is defined as distance per unit time; thus, the ratio of velocities 

may be expressed as: 
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 The flow (Q) is expressed as volume per unit time and may be given by: 
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 Dynamic Laboratory Model similarity implies similarity in forces involved in 

motion. In broken-back culverts, inertial force and gravitational (g) force are considered 

dominant forces in fluid motion. The Froude number is defined as: 
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As gp and gm are the same in a model and the prototype, these cancel in Equation 7, 

yielding: 
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Using the three similarities, a variable of interest can be extrapolated from the model to 

the prototype broken-back culvert.  
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4 Model 

4.1  LABORATORY MODEL 

During the initial period of discussion regarding the construction of a scale model 

representing a 150 feet long broken-back culvert with 2-10’x10’ to 2-10’x20’ and a 

vertical drop of 30 feet, the research group visited the USDA Agricultural Research 

Service Hydraulic Engineering Research Laboratory in Stillwater, Oklahoma. This was 

the facility at which testing was done. The group visited with facility personnel and 

inspected the equipment that would be used to conduct tests. Physical dimensions of 

the flume that would be used were noted, as well as the flow capacity of the system. 

Two scales were considered for the model. A scale of either 1:10 or 1:20 would 

allow for geometric similitude in a model that could easily be produced. The 1:20 scale 

model (Figure 2-4) was adopted due to space limitations at the testing facility and in 

consideration of the potential need to expand the model depending on where the 

hydraulic jump occurred. If the hydraulic jump did not form within the model, the smaller 

scale would leave room to double the length of the culvert. In addition, a lower flow rate 

would be required during testing if a smaller scale were used. 

Other considerations included what materials to use in building the model, and 

what construction methods would be best. The materials considered were wood and 

Plexiglas®. Plexiglas® was found preferable because it offered visibility as well as 

durability, and a surface which would closely simulate the surface being modeled. The 

Manning’s roughness value for Plexiglas® is 0.010 which is very close to the roughness 

of finished concrete at 0.012. The thickness of the Plexiglas® was decided based on 

weight, rigidity, workability, and the ease with which the material would fit into scale. 

Half-inch Plexiglas® proved to be sturdy and was thick enough to allow connection 

hardware to be installed in the edges of the plates. This material also fit well into the 

proposed scale of 1 to 20 which equated 0.50 inch in the model to one-foot in the 

prototype. The construction methods included constructing the model completely at the 

Oklahoma State University campus and moving it to the test facility, creating sections of 
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the model at the university and assembling them at the test facility, or contracting with 

the testing facility to construct the model. It was decided that the model would be 

constructed at the test facility. The entire laboratory model can be seen in Figures 2 and 

6. During the course of the test runs, it became apparent that a flow straightener would 

have to be installed inside the reservoir to calm the inlet flow. A sealed plywood divider 

was constructed with a series of openings covered with coarse mesh.  

In addition to the Plexiglas® model of the culvert, a reservoir was constructed 

upstream of the model to collect and calm the fluid entering the model. The reservoir 

was constructed with plywood, because it was not necessary to observe the behavior of 

the fluid upstream of the model. Within the reservoir, wing walls at an angle of 60 

degrees were constructed to channel flow into the model opening. The base of the 

wingwalls was constructed with plywood and the exposed wingwall models were formed 

with Plexiglas®. The same design was used for the outlet structure of the culvert (Figure 

5-7). 

The objective of the test was to determine the effect of sill and friction blocks on 

the hydraulic jump within the prototype, therefore the model was constructed so that 

different arrangements of sill and friction blocks could be placed and observed within 

the model. Friction blocks were mounted in different arrangements on a sheet of 

Plexiglas® the same width as the barrels, and placed in the barrels (Figure 8-11). The 

friction block shape selected was a regular flat-faced friction block. Sills were located 

only on the horizontal portion of the model. 

Two sections were constructed and added to the model for several experiments. 

These sections served two purposes. During initial experimentation, it was observed 

that the original design was under pressure and that a theoretical hydraulic jump would 

occur above the confines of the existing culvert ceiling. The additional sections were 

inverted and mounted to the top of the original model, making a culvert with 2 barrels 6 

inches wide by 12 inches high and the original length of 54 inches. Access holes were 

cut into the top of these sections to allow for the placement of a velocity meter when 

used as a cover for the expanded height. Figure 12 shows the downstream channel 

made from plywood, and it connected with a wingwall. Figures 13-14 show the point 
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gauge that was used to correct the heights of the three flow conditions of 0.8, 1.0, and 

1.2 times the culvert depth. The Acoustic Doppler Velocimeter (ADV) can be plugged 

into the culvert model and connected with the computer as shown in the Figures 15-17. 

Figures 18-20 show the Pitot tube and the Pitot tube plugged in the culvert model, which 

illustrates where to measure the velocity upstream and downstream in the model.  

 

 

 

Figure 2. 3-D view of model 
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Figure 3. Profile view of model 

 

 

 

  Figure 4. Plan view of model 
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Figure 5. Front view of laboratory model 
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Figure 6. Full laboratory model 
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Figure 7. Reservoir and flow straightener 
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Figure 8. Example of flat faced friction 

 

Figure 9. Different size of flat-faced friction blocks  
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Figure 10. Friction block arrangement 

 

Figure 11. Typical sill dimensions 
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Figure 12. Downstream plywood channel after wingwall 

 

Figure 13. Point gauge front view 
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Figure 14. Point gauge side view 

 

Figure 15. ADV probe and sensor head 
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Figure 16. ADV plugged to measure the downstream velocity (Vd/s) 

 

Figure 17. ADV Mounted over Flume 
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Figure 18. Pitot tube 
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Figure 19. Pitot tube sitting on mount plugged into culvert upstream (Vu/s) 
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Figure 20.  Pitot tube sitting on mount on culvert model downstream (Vd/s) 
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5 Data Collection  

5.1   OPEN CHANNEL AND PRESSURE FLOW 

Many experiments were conducted to create energy dissipation within a broken-

back culvert. Thirty-two experiments were completed for this model with variations in 

length, height, width, and energy dissipators used. Each experiment tested three 

scenarios. They were run with upstream heads of 0.8d, 1.0d, and 1.2d with each depth 

denoted by A, B, or C, respectively. In this research, experiments were named 

according to scenarios. For example, 8A represents Experiment 8 run at 0.8d, 8B 

represents Experiment 8 run at 1.0d, and 8C represents Experiment 8 run at 1.2d. A 

SonTek 2D-side looking MicroADV sonar velocimeter was used to measure the velocity 

at the intake of the structure, after the hydraulic jump, and at the downstream end of the 

culvert. 2D-side looking denotes it has two receiver arms to give readings in the x and y 

planes. Also, a Pitot tube was used to measure velocity at the toe before the hydraulic 

jump. The flow rates for all experiments were measured and used to calculate the 

velocity at the intake of the structure which is at the inlet of the reservoir. 

For open channel flow conditions, Experiment 1 was performed to investigate the 

possibility of a hydraulic jump occurring without friction blocks or sills. For experiments 2 

through 10, the height of the culvert was 12 inches with the original length of 54.00 

inches and width of 6 inches representing the open channel condition. Different sill 

heights were used in the experiments. Experiment 2 was performed with a 4.00-inch sill 

height located 12 inches from the end. The reason for increasing the sill heights was to 

produce a hydraulic jump located at the toe of the sloped channel in order to maintain 

subcritical flow throughout the flat section of the broken-back culvert. In order to get the 

optimal location of the hydraulic jump with a lower possible sill height, the sill was 

moved toward the center of the culvert. Therefore, Experiment 3 was performed with a 

3.50-inch sill height 20 inches from the end of the culvert. Once this experiment was 

chosen as a possible solution, further investigation of energy dissipation was necessary. 

Different configurations and numbers, sizes of friction blocks were utilized in the same 

sill arrangement. Experiment 4 was performed using fifteen regular flat-faced friction 
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blocks. Experiment 5 was performed with 30 flat-faced friction blocks. Experiment 6 was 

performed using 3.50-inch sill with 12, 2 × 2 inches flat-faced friction blocks (FFFBs). 

 For pressure flow conditions, experiments 11 through 19 were run on a model 

with 2 barrels measuring 6 inches by 6 inches in area and a length of 54.00 inches, 

which represented pressure flow conditions. Different configurations of friction blocks 

and sills were used in the experiments. Experiment 13 was performed with a 2.50-inch 

sill height 19 inches from the end of the culvert. Once this experiment was chosen as a 

possible solution, further investigation of energy dissipation was necessary. Different 

configurations and numbers, sizes of friction blocks were utilized in the same sill 

arrangement 

For the slotted design sill under open channel flow conditions, experiments 23 to 

26 were performed to investigate the possibility of a hydraulic jump occurring using the 

slotted sills and different size of friction blocks. Experiment 23 was performed with 4.50-

inch sills at the end of culvert. Experiment 25 was performed with 3.50-inch sills at 20 

inches from the end of culvert. Once experiments 23 (with end sill) and 24 (with middle 

sill) were chosen as a possible solution for the slotted sill, there was a need for further 

investigation of energy dissipation. Different configurations and numbers, size of friction 

blocks were utilized in the same sill arrangement. Experiment 24 was performed using 

Experiment 23 with 6, 2 × 2 inches FFFBs at 18 inches from the toe of culvert. 

Experiment 26 was performed using Experiment 25 with 6, 2 × 2 inches FFFBs at 31 

inches from the toe of culvert. 

For slotted sill design under pressure flow conditions, experiments 27 to 30 were 

performed to investigate the possibility of a hydraulic jump occurring using slotted sill 

and friction blocks. Experiment 27 was performed with a 2.5-inch sill at the end of the 

culvert. Once experiment 27 was chosen as a possible solution, further investigation of 

energy dissipation was necessary. Different configurations and numbers, size of friction 

blocks were utilized in the same sill arrangement. Experiment 28 was performed using 

Experiment 27 with 6, 2 × 2 inches FFFBs at 28 inches from the toe of culvert.  

Experiment 29 was performed with 3.00-inch slotted sill at 25 inches from the end of 
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culvert. Experiment 30 was performed using Experiment 29 with 6, 2 × 2 inches FFFBs 

at 18 inches from the toe of culvert. 

 For open channel and pressure flow conditions, different size of flat-faced friction 

block were used in order to investigate the significant of FFFBs by itself. The selected 

experiments are presented in the data analysis, and all experiment photos and results 

can be seen in Appendix A.  

In these experiments, the length of the hydraulic jump (L), the depth before the 

jump (Y1), the depth after the jump (Y2), the distance from the beginning of the hydraulic 

jump to the beginning of the sill (X), the depth of the water in the inclined channel (Ys), 

and the depth of the water downstream of the culvert (Yd/s) were measured. All 

dimensions were measured using a ruler and point gauge. The flow rate was measured 

by a two-plate manometer which measures the pressure difference in a fixed pipe 

opening size. As mentioned above, the velocity before the jump (V1) was measured by 

a Pitot tube. The velocity at the inlet of the structure (Vu/s), the velocity after the jump 

(V2), and the velocity downstream of culvert (Vd/s) were all measured by ADV.  

The procedure for the experiment is as follows:  

1. Install energy dissipation tool (such as sills or friction blocks) in the model. 

2. Set point gauge to the correct height in the reservoir (for example, Experiment 1A 

means the head is equal to 0.8d). 

3. Turn on pump in station. 

4. Adjust valve and coordinate the opening to obtain the amount of head for the 

experiment. 

5. Record the reading for flow rate (using a two plate manometer). 

6. Run the model for 10 minutes before taking measurements to allow flow to 

establish. 

7. Measure Ys, Y1, Y2, L, X, and Yd/s. 

8. Measure velocities along the channel Vu/s, V1, V2, and Vd/s. 

9. Post-process the raw ADV data to determine final velocity values. 

Post-processing the raw ADV data was essential to maintain data validity. A 

software program from the Bureau of Reclamation called WinADV was obtained to 
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process the ADV data. The MicroADV was calibrated according to water temperature, 

salt content, and total suspended solids. The unit was calibrated to the manufacturer’s 

specification for total suspended solids based on desired trace solution water content. 

At the end of each day of experiments, the reserve was drained to prevent mold growth 

which could affect the suspended solid concentration of the water. If this change in 

sedimentation concentration were to occur, it could minimally affect velocity readings.  

The variables in a hydraulic jump can be seen in Figure 18 and the following notations 

are used as variables key in this report: 

H. J.  = Hydraulic jump  

H  = Head upstream of culvert, inches 

Q  = Flow rate, cfs 

Ys  = Water depth at inclined channel, inches  

Yt  = Water depth at toe of culvert, inches  

Y1  = Water depth before hydraulic jump in supercritical flow, inches  

Y2  = Water depth after hydraulic jump in subcritical flow, inches 

Yd/s  = Water depth at downstream of culvert, inches 

Fr1 = Froude Number in supercritical flow 

Vu/s  = Velocity at upstream of culvert, fps  

Vs  = Velocity at inclined channel in supercritical flow, fps  

V1  = Velocity before hydraulic jump in supercritical flow, fps  

V2  = Velocity after hydraulic jump in subcritical flow, fps  

Vd/s  = Velocity downstream of culvert, fps 

X  = Location of toe of the hydraulic jump to the beginning of the sill, inches 

L  = Length of hydraulic jump, inches 

∆𝐸  = Energy loss due to hydraulic jump, inches 

THL  = Total head loss for entire culvert, inches 
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E2/E1  = Efficiency of hydraulic jump  

N = No hydraulic jump occurred 

Y = Hydraulic jump occurred 

ADV = Acoustic Doppler Velocimter 

FFFBs= Flat-faced friction blocks 

 

 

 

Figure 21. Hydraulic jump variables in a broken-back culvert 
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6 Data Analysis 

6.1  OPEN CHANNEL FLOW CONDITIONS USING REGULAR 

SILLS 

 Nine experiments performed using sills only, friction blocks only, and varied 

height friction block and sill combinations were selected for analysis. Experiment 1 used 

no sills or friction blocks. Experiment 2 was not selected for analysis because the jump 

was not located at the toe. Experiment 3 used a sill and no friction blocks. Experiment 4 

used a sill and 15 friction blocks. Experiment 5 used a sill and 6 - 2” × 2” flat-faced 

friction blocks. Experiment 6 used a sill and 12 - 2” × 2” inches flat-faced friction blocks. 

Experiment 8 used an end sill. Experiment 9 used a sill and 15 flat-faced friction blocks. 

Lastly Experiment 10 used a sill and 30 flat-faced friction blocks. 

Experiment 1 was run without any energy dissipation devices or sill in order to 

allow evaluation of the hydraulic characteristics of the model, including the Froude 

number and supercritical flow conditions. This experiment did not produce a hydraulic 

jump. The results can be found in Table 1, below. 

Table 1. Hydraulic parameters for Experiment 1 

Scenario 1A 1B 1C 

CASE 0.8d 1.0d 1.2d 

Q (cfs) 1.16 1.23 1.49 

Vu/s (fps) 2.91 2.45 2.48 

Ys (in) 2.00 2.75 3.25 

Yt (in) 1.25 1.75 2.00 

Y1 (in) 1.25 1.75 2.00 

Yd/s (in) 1.25 1.75 2.00 

V1 (fps) 9.83 10.23 10.23 

Fr1  5.37 4.72 4.42 
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The total head loss between upstream of structure and downstream of structure 

was calculated by applying the Bernoulli equation: 
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Where:     THL = Total head loss, inches 

H = Water depth upstream of the culvert, inches 

Z = Drop between upstream and downstream. The model was 1.5 feet, representing a 

30-foot drop in the prototype. 

 The loss of energy or energy dissipation in the jump was calculated by 

subtracting the specific energy after the jump from the specific energy before the jump. 
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 The efficiency of the jump was calculated by taking the ratio of the specific 

energy after and before the jump: 
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 Where the downstream depth was known, the following equation was used to 

calculate the upstream supercritical flow Froude number (Fr1) of the hydraulic jump: 
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 The following equation was used to calculate the Froude number (Fr1) of the 

hydraulic jump in pressure flow conditions: 
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 Experiment 2 was run using a 4-inch sill located 12 inches from the end of the 

culvert. A hydraulic jump was observed in all three flow conditions. The results show the 

Froude number values ranged from 4.06 to 4.11. The hydraulic jump was located far 

away from the toe of the culvert, so the sill was changed to 3.5 inches and moved 

forward to the toe in Experiment 3, which was 20 inches from the end of the culvert with 

3.5 inches sill. Additional results for Experiment 2 can be seen in Table 2. 

Table 2. Hydraulic parameters for Experiment 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scenario 2A 2B 2C 

CASE 0.8d 1.0d 1.2d 

Q (cfs) 0.92 1.23 1.48 

Vu/s (fps) 2.31 2.45 2.47 

Ys (in) 2.13 2.50 3.35 

Yt (in) 1.75 2.00 2.13 

Y1 (in) 1.75 2.00 2.13 

Y2 (in) 8.5 9.50 9.75 

Yd/s (in) 2.80 3.00 4.00 

Fr1 4.07 4.06 4.11 

Vs (fps) 5.34 4.95 7.42 

V1 (fps) 8.82 9.41 9.83 

V2 (fps) 2.07 2.32 3.28 

Vd/s (fps) 4.33 3.47 2.84 

L (in) 23.00 28.00 13.30 

X (in) 41.00 41.00 41.00 

ΔE (in) 5.17 5.55 5.33 

THL (in) 17.49 19.87 20.84 

E2/E1 0.60 0.60 0.60 
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 Experiment 3 was run with a 3.5-inch sill 20 inches from the end of the culvert, 

utilizing the increased culvert height of 12 inches. A hydraulic jump was observed in all 

three flow conditions. The results show that the Froude number values ranged from 

3.77 to 5.09. This range of Froude number values indicates between an oscillating and 

steady type of hydraulic jump. In an oscillating jump, a cyclic jet of water enters the 

bottom of the jump and then rises to the water surface and sinks back down again with 

no periodicity in cycles. The energy loss due to the hydraulic jump ranged from 6.35 

inches to 7.96 inches and the total head loss for the whole culvert ranged from 15.50 

inches to 16.51 inches. Additional results can be seen in Table 3. 

Table 3. Hydraulic parameters for Experiment 3 

 

 

 

 

 

 

 

 

 

 

 

 

Scenario 3A 3B 3C 

CASE 0.8d 1.0d 1.2d 

Q (cfs) 0.91 1.22 1.50 

Vu/s (fps) 2.26 2.43 2.49 

Ys (in) 2.00 2.85 3.50 

Yt (in) 1.35 1.75 2.25 

Y1 (in) 1.35 1.75 2.25 

Y2 (in) 8.50 9.75 10.75 

Yd/s (in) 2.50 3.00 3.35 

Fr1 5.09 4.60 3.77 

Vs (fps) 5.33 5.08 4.42 

V1 (fps) 9.69 9.96 9.27 

V2 (fps) 2.83 3.06 6.13 

Vd/s (fps) 5.56 5.91 5.91 

L (in) 18.00 20.00 22.00 

X (in) 33.00 33.00 33.00 

ΔE (in) 7.96 7.50 6.35 

THL (in) 15.57 15.60 16.51 

E2/E1 0.50 0.55 0.64 
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 Experiment 4 was run with a 3.5-inch sill 20 inches from the end of the culvert 

with 15 flat-faced friction blocks (FFFBs) at 19” from toe, utilizing the increased culvert 

height of 12 inches. A hydraulic jump was observed in all three flow conditions. The 

results show that the Froude number values ranged from 4.53 to 4.83. This range of 

Froude number values are indicates an oscillating type of hydraulic jump. The energy 

loss due to hydraulic jump ranged from 4.76 inches to 7.26 inches and the total head 

loss for the whole culvert ranged from 12.87 inches to 15.75 inches. Additional results 

can be seen in Table 4. 

Table 4. Hydraulic parameters for Experiment 4 

Scenario 4A 4B 4C 

CASE 0.8d 1.0d 1.2d 

Q (cfs) 0.91 1.23 1.50 

Vu/s (fps) 2.26 2.45 2.50 

Ys (in) 2.25 2.75 3.50 

Yt (in) 1.50 1.50 1.85 

Y1 (in) 1.50 1.75 2.00 

Y2 (in) 8.75 9.00 9.00 

Yd/s (in) 2.50 3.25 3.50 

Fr1 4.83 4.72 4.53 

Vs (fps) 7.05 7.45 7.52 

V1 (fps) 9.69 10.23 10.49 

V2 (fps) 3.66 4.17 5.18 

Vd/s (fps) 5.43 6.95 6.65 

L (in) 17.00 16.00 16.00 

X (in) 33.00 33.00 33.00 

ΔE (in) 7.26 6.05 4.76 

THL (in) 15.75 12.87 14.62 

E2/E1 0.52 0.53 0.55 
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 Experiment 5 was run with a 3.5-inch sill 20 inches from the end of the culvert 

with 6, 2 by 2 inches flat-faced friction blocks (FFFBs) at 18” from the toe, utilizing the 

increased culvert height of 12 inches. A hydraulic jump was observed in all three flow 

conditions. The results show that the Froude number values ranged from 3.46 to 4.28. 

This range of Froude number values are indicates an oscillating type of hydraulic jump. 

The energy loss due to hydraulic jump ranged from 2.30 inches to 5.33 inches and the 

total head loss for the whole culvert ranged from 16.17 inches to 16.29 inches. 

Additional results can be seen in Table 5. 

Table 5. Hydraulic parameters for Experiment 5 

Scenario 5A 5B 5C 

CASE 0.8d 1.0d 1.2d 

Q (cfs) 0.86 1.18 1.44 

Vu/s (fps) 2.16 2.36 2.39 

Ys (in) 2.00 2.75 3.00 

Yt (in) 2.25 2.50 2.75 

Y1 (in) 2.50 2.00 2.13 

Y2 (in) 8.25 9.25 9.75 

Yd/s (in) 2.00 2.50 3.25 

Fr1 3.46 3.94 4.28 

Vs (fps) 6.88 7.22 7.32 

V1 (fps) 8.97 9.12 10.23 

V2 (fps) 2.32 5.05 5.67 

Vd/s (fps) 5.43 5.79 6.02 

L (in) 17.00 19.00 22.00 

X (in) 33.00 33.00 33.00 

ΔE (in) 2.30 5.15 5.33 

THL (in) 16.17 16.29 16.27 

E2/E1 0.68 0.62 0.58 
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 Experiment 6 was run with a 3.5-inch sill 20 inches from the end of the culvert 

with 12, 2 by 2 inches flat-faced friction blocks (FFFBs) at 18 inches from the toe, 

utilizing the increased culvert height of 12 inches. A hydraulic jump was observed in all 

three flow conditions. The results show that the Froude number values ranged from 

2.52 to 2.70. This range of Froude number values are indicates an oscillating type of 

hydraulic jump. The energy loss due to hydraulic jump ranged from 1.63 inches to 2.24 

inches and the total head loss for the whole culvert ranged from 15.82 inches to 15.98 

inches. The energy dissipation ranged from 0.79 to 0.82. Additional results can be seen 

in Table 6. 

Table 6. Hydraulic parameters for Experiment 6 

Scenario 6A 6B 6C 

CASE 0.8d 1.0d 1.2d 

Q (cfs) 0.89 1.18 1.47 

Vu/s (fps) 2.23 2.37 2.45 

Ys (in) 2.00 2.50 3.50 

Yt (in) 3.00 4.00 4.50 

Y1 (in) 2.75 3.75 4.00 

Y2 (in) 8.75 10.00 11.25 

Yd/s (in) 2.25 2.85 3.50 

Fr1 2.70 2.52 2.55 

Vs (fps) 5.20 7.74 7.47 

V1 (fps) 7.33 8.03 8.35 

V2 (fps) 4.01 4.63 5.43 

Vd/s (fps) 5.43 5.79 6.13 

L (in) 17.00 18.00 20.00 

X (in) 33.00 33.00 33.00 

ΔE (in) 2.24 1.63 2.12 

THL (in) 15.98 15.94 15.82 

E2/E1 0.79 0.82 0.82 
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 Experiment 8 was run with a 4-inch sill at the end of the culvert, utilizing the 

increased culvert height of 12 inches. A hydraulic jump was observed in all three flow 

conditions. The results show that the Froude number values ranged from 4.29 to 4.90. 

This range of Froude number values are indicates an oscillating type of hydraulic jump. 

The energy loss due to hydraulic jump ranged from 6.65 inches to 7.03 inches and the 

total head loss for the whole culvert ranged from 18.58 inches to 20.26 inches. 

Additional results can be seen in Table 7. 

Table 7. Hydraulic parameters for Experiment 8 

Scenario 8A 8B 8C 

CASE 0.8d 1.0d 1.2d 

Q (cfs) 0.87 1.20 1.43 

Vu/s (fps) 2.18 2.41 2.39 

Ys (in) 1.85 2.75 3.00 

Yt (in) 1.50 1.75 1.85 

Y1 (in) 1.50 1.85 2.00 

Y2 (in) 8.50 9.65 10.35 

Yd/s (in) 1.75 2.50 2.25 

Fr1 4.90 4.29 4.30 

Vs (fps) 6.41 3.59 5.89 

V1 (fps) 9.83 9.55 9.96 

V2 (fps) 2.32 2.59 2.84 

Vd/s (fps) 4.01 4.63 4.49 

L (in) 18.00 19.00 22.00 

X (in) 50.00 35.00 36.00 

ΔE (in) 6.73 6.65 7.03 

THL (in) 18.94 18.58 20.26 

E2/E1 0.52 0.58 0.58 
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 Experiment 9 was run with a 4-inch sill at the end of the culvert with 15 FFFBs at 

25” from the toe. A hydraulic jump was observed in all three flow conditions. The results 

show that the Froude number values ranged from 4.28 to 4.50. This range of Froude 

number values are indicates an oscillating type of hydraulic jump. The energy loss due 

to hydraulic jump ranged from 4.76 inches to 6.37 inches and the total head loss for the 

whole culvert ranged from 18.66 inches to 18.82 inches. Additional results can be seen 

in Table 8. 

Table 8. Hydraulic parameters for Experiment 9 

Scenario 9A 9B 9C 

CASE 0.8d 1.0d 1.2d 

Q (cfs) 0.94 1.21 1.68 

Vu/s (fps) 2.34 2.41 2.79 

Ys (in) 2.13 2.75 3.25 

Yt (in) 1.75 1.75 2.25 

Y1 (in) 1.75 1.85 2.13 

Y2 (in) 8.25 9.50 10.25 

Yd/s (in) 1.50 2.00 2.50 

Fr1 4.34 4.50 4.28 

Vs (fps) 6.18 6.15 7.52 

V1 (fps) 9.41 10.03 10.23 

V2 (fps) 3.06 4.33 2.84 

Vd/s (fps) 4.33 4.78 5.43 

L (in) 18.00 21.00 22.00 

X (in) 47.00 41.00 44.00 

ΔE (in) 4.76 6.37 6.13 

THL (in) 18.82 18.84 18.66 

E2/E1 0.57 0.55 0.58 
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 Experiment 10 was run with a 4-inch sill at the end of the culvert with 30 FFFBs 

at 25” from the toe. A hydraulic jump was observed in all three flow conditions. The 

results show that the Froude number values ranged from 4.30 to 4.55. This range of 

Froude number values are indicates an oscillating type of hydraulic jump. The energy 

loss due to hydraulic jump ranged from 5.97 inches to 6.85 inches and the total head 

loss for the whole culvert ranged from 19.24 inches to 21.65 inches. Additional results 

can be seen in Table 9. 

Table 9. Hydraulic parameters for Experiment 10 

Scenario 10A 10B 10C 

CASE 0.8d 1.0d 1.2d 

Q (cfs) 0.90 1.24 1.50 

Vu/s (fps) 2.25 2.48 2.49 

Ys (in) 2.00 2.65 3.00 

Yt (in) 1.50 1.75 2.13 

Y1 (in) 1.50 2.00 2.00 

Y2 (in) 8.50 9.75 10.25 

Yd/s (in) 1.50 1.75 2.00 

Fr1 4.55 4.42 4.30 

Vs (fps) 5.84 6.17 7.52 

V1 (fps) 9.12 10.23 9.96 

V2 (fps) 2.01 2.01 3.03 

Vd/s (fps) 4.01 3.06 5.18 

L (in) 18.00 19.00 21.00 

X (in) 52.00 40.00 43.00 

ΔE (in) 6.73 5.97 6.85 

THL (in) 19.24 21.65 19.36 

E2/E1 0.55 0.56 0.58 
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6.1.1 OPEN CHANNEL FLOW CONDITIONS USING 

DIFFERENT SIZE OF FRICTION BLOCKS 

Experiment 7 was run with a 12 FFFBs 2 × 2 inches at 26 inches from the end of 

culvert. A hydraulic jump was observed in all three flow conditions. The results show 

that the Froude number values ranged from 2.86 to 3.80. This range of Froude number 

values are indicates an oscillating type of hydraulic jump. The energy loss due to 

hydraulic jump ranged from 2.59 inches to 4.09 inches and the total head loss for the 

whole culvert ranged from 16.33 inches to 16.80 inches. Additional results can be seen 

in Table 10. 

Table 10. Hydraulic parameters for Experiment 7 

Scenario 7A 7B 7C 

CASE 0.8d 1.0d 1.2d 

Q (cfs) 0.90 1.20 1.46 

Vu/s (fps) 2.24 2.40 2.43 

Ys (in) 2.00 2.65 3.00 

Yt (in) 2.50 2.35 3.33 

Y1 (in) 2.50 2.35 3.13 

Y2 (in) 8.85 9.50 10.00 

Yd/s (in) 2.50 3.25 3.50 

Fr1 2.86 3.80 3.32 

Vs (fps) 5.44 7.55 8.88 

V1 (fps) 7.42 9.55 9.62 

V2 (fps) 1.64 6.13 4.63 

Vd/s (fps) 4.91 5.43 5.67 

L (in) 16.00 18.00 18.00 

X (in) 26.00 26.00 26.00 

ΔE (in) 2.89 4.09 2.59 

THL (in) 16.74 16.33 16.80 

E2/E1 0.76 0.63 0.69 

 

 



 

54 

Experiment 20 was run with a 4 FFFBs 3 × 3 inches at 20” from the end of 

culvert. A hydraulic jump was observed in all three flow conditions. The results show 

that the Froude number values ranged from 4.41 to 4.53. This range of Froude number 

values are indicates an oscillating type of hydraulic jump. The energy loss due to 

hydraulic jump ranged from 5.17 inches to 7.31 inches and the total head loss for the 

whole culvert ranged from 15.38 inches to 15.82 inches. Additional results can be seen 

in Table 11 

Table 11. Hydraulic parameters for Experiment 20 

Scenario 20A 20B 20C 

CASE 0.8d 1.0d 1.2d 

Q (cfs) 0.94 1.20 1.51 

Vu/s (fps) 2.35 2.40 2.51 

Ys (in) 2.00 2.50 3.50 

Yt (in) 1.75 2.00 2.00 

Y1 (in) 1.75 2.00 2.00 

Y2 (in) 8.50 9.50 10.50 

Yd/s (in) 2.75 3.00 4.00 

Fr1 4.41 4.42 4.53 

Vs (fps) 5.63 5.52 5.31 

V1 (fps) 9.55 10.23 10.49 

V2 (fps) 3.84 2.32 6.34 

Vd/s (fps) 5.43 5.79 6.13 

L (in) 20.00 21.00 21.00 

X (in) 24.00 25.00 24.00 

ΔE (in) 5.17 5.55 7.31 

THL (in) 15.58 15.82 15.38 

E2/E1 0.56 0.56 0.55 

 

 

 



 

55 

Experiment 22 was run with a 3 FFFBs 4 × 4 inches at the end of culvert. A 

hydraulic jump was observed in all three flow conditions. The results show that the 

Froude number values ranged from 3.65 to 4.06. This range of Froude number values 

are indicates an oscillating type of hydraulic jump. The energy loss due to hydraulic 

jump ranged from 3.80 inches to 7.31 inches and the total head loss for the whole 

culvert ranged from 19.60 inches to 20.28 inches. Additional results can be seen in 

Table 12. 

Table 12. Hydraulic parameters for Experiment 22 

Scenario 22A 22B 22C 

CASE 0.8d 1.0d 1.2d 

Q (cfs) 0.91 1.22 1.44 

Vu/s (fps) 2.26 2.43 2.40 

Ys (in) 2.00 2.50 3.50 

Yt (in) 2.25 2.00 2.50 

Y1 (in) 2.25 2.00 2.50 

Y2 (in) 9.00 10.50 11.00 

Yd/s (in) 2.50 3.50 4.00 

Fr1 3.65 4.06 3.95 

Vs (fps) 7.14 7.35 6.22 

V1 (fps) 8.97 9.41 10.23 

V2 (fps) 1.16 2.32 2.32 

Vd/s (fps) 2.32 3.28 3.28 

L (in) 20.00 18.00 20.00 

X (in) 40.00 40.00 39.00 

ΔE (in) 3.80 7.31 5.58 

THL (in) 20.25 19.60 20.28 

E2/E1 0.65 0.60 0.61 
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6.2 PRESSURE FLOW CONDITIONS USING REGULAR SILLS  

 Seven experiments were selected from fourteen experiments performed in the 

hydraulic laboratory for pressure flow conditions. These experiments show model runs 

without friction blocks, the effect of a sill at the end of the model, slotted sill at the end 

and the middle of culvert, and with friction blocks as well as the sill. The flat-faced 

friction blocks (FFFBs) were used 1” × 1”, 2”×2”, 3”×3”, and 4”×4” (see Figure 9). After 

the effectiveness was evaluated, the numbers of blocks were varied dependent on the 

size of FFFBs. Experiment 16 was not selected for analysis because the two sills were 

used and the culvert was not shortened.  

 In these experiments, the optimum regular and slotted sill height was determined 

first by placing the sill at the end of culvert and then by raising or lowering the sill height 

until a good hydraulic jump was created. The optimum sill location was found next by 

incrementally moving the sill towards the front of the culvert to locate the jump near the 

toe of the culver. Finally the effectiveness of friction blocks and optimum sill parameters 

was determined by trying different friction block and sill combinations. 

 To solve the momentum equation for pressure flow conditions in the culvert 

hydraulic jump and then to simplify the solution graphically, numerous studies have 

been done for open channel flow conditions derived from the Belanger equation which 

expresses the ratio between sequent depths as functions of the upstream Froude 

number (Chow 1959, Lowe et al. 2011). Chow stated the hydraulic jump will form in the 

channel if the Fr1 of the flow, the flow depth Y1, and the depth after hydraulic jump Y2 

satisfy the following equation: 
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So, from the above equation, Y2 can be calculated as following: 
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The following equation was used to calculate the Froude number (Fr1) of the hydraulic 

jump in the upstream: 

 

where V1 = velocity before hydraulic jump; g = acceleration due to gravity; and Y1 = 

water depth before hydraulic jump. 

A complete derivation of momentum theory of incomplete hydraulic jumps can be 

reviewed in Lowe (2011); the following equations are obtained for sequent depth of 

incomplete jumps for a rectangular cross-section: 

 

 

The dimensionless form of the sequent depth: 

 

where 𝑌1
′, and 𝑌2

′ are the dimensionless sequent depths before and after the jump, 

respectively; Fr1 is approach or supercritical Froude number and D is height of culvert 

(ft). 

According to Lowe (2011), equations to calculate the Froude number in the incomplete 

hydraulic jump are as follows: 

Calculate the Y2 from 𝑌2
′, dimensionless flow depth 
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From equation (2), the actual Froude number at upstream supercritical flow can be 

calculated which the adjusted Froude number is (𝐹𝑟1(adjusted)
′ ): 

 

The efficiency of the jump was calculated by taking the ratio of the specific energy 

before and after the jump (Chow, 1959): 

 

The efficiency of the jump in the incomplete jump can be calculated by using the 

adjusted Froude number (𝐹𝑟1(adjusted)
′ ): 

 

where E1 is the energy head before the jump, inches, E2 is the energy head after the 

jump, inches, and 𝐹𝑟1(adjusted)
′  is the Froude number before the jump. 

The total head loss between upstream and downstream of the structure was calculated 

by applying the Bernoulli equation: 

 

where THL is total head loss, inches, H is water depth upstream of the culvert, inches, 

and Z is the drop between upstream and downstream which in the model was 18 

inches, representing a 30-foot drop in the prototype. 
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The loss of energy or energy dissipation in the jump was calculated by taking the 

difference between the specific energy before the jump and after the jump: 

 

where E1 is energy head before the jump, inches and E2 is energy head after the jump, 

inches. 

 Experiment 11 was run without any energy dissipation devices or sill in order to 

evaluate the hydraulic characteristics of the model, including the Froude number and 

supercritical flow conditions. This experiment is also an example of the current field 

practice to allow the kinetic energy of fluid to be transferred downstream without energy 

reduction. This experiment did not produce a hydraulic jump. The results can be found 

in Table 13, below. The flow regime is classified as supercritical flow, which means the 

Froude number is greater than 1. A hydraulic jump occurs when the flow has a sudden 

change from supercritical flow to subcritical flow. At the start of the jump the flow depth 

will begin to increase and the velocity will slow creating an area of turbulence.  

Table 13. Hydraulic parameters for Experiment 11 

Scenario 11A 11B 11C 

CASE (0.8d) (1.0d) (1.2d) 

Q (cfs) 0.90 1.21 1.50 

Vu/s (fps) 2.24 2.43 2.50 

Y1 (in) 1.50 1.75 1.75 

Yd/s (in) 1.50 1.65 1.85 

Fr1  5.23 4.90 4.90 

V1 (fps) 10.49 10.62 10.62 

Vd/s (fps) 9.83 10.23 10.36 

THL (in) 3.23 4.10 5.02 
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 Experiment 12 was run with one sill: a 2.5-inch sill at the end of the culvert. This 

experiment demonstrated the use of one sill to control the hydraulic jump under 

pressure flow conditions. Pressure flow condition is defined by the fluid excreting 

pressure against the top of the model. A hydraulic jump was observed in all three flow 

conditions. The results showed that the Froude number values ranged from 4.53 to 

5.48. Cases are indicative of a steady jump. The total head loss for the whole culvert 

ranges from 10.26 inches to 11.44 inches. We calculated this table according to 

equations 1 to 3, and for Y2, Equation 15 was used to calculate the E2/E1 under 

pressure flow conditions. All results can be seen in Table 14.  

Table 14. Hydraulic parameters for Experiment 12 

Scenario  12A 12B 12C 

CASE (0.8d) (1.0d) (1.2d) 

Q (cfs) 0.92 1.22 1.50 

Vu/s (fps) 2.30 2.43 2.50 

Y1 (in) 1.20 1.65 2.00 

Y2 (in) 8.88 10.60 12.00 

Yd/s (in) 2.50 3.00 3.50 

Fr1 5.48 4.74 4.53 

V1 (fps) 9.83 9.96 10.49 

V2 (fps) 4.91 4.63 5.18 

Vd/s (fps) 3.66 4.01 6.95 

∆E (in) 10.63 10.26 11.42 

THL (in) 18.78 19.10 13.87 

E2/E1 0.46 0.52 0.53 
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 Experiment 13 was run with one sill: a 2.5-inch sill located 19 inches from the 

end of the culvert. This experiment demonstrated the use of one sill to control the 

hydraulic jump under pressure flow conditions. Pressure flow condition is defined by the 

fluid excreting pressure against the top of the model. A hydraulic jump was observed in 

all three flow conditions. The results showed that the Froude number values ranged 

from 4.56 to 5.09. Cases are indicative of a steady jump. The total head loss for the 

whole culvert ranges from 16.74 inches to 20.01 inches. We calculated this table 

according to equations 1 to 3. All results can be seen in Table 15.  

Table 15. Hydraulic parameters for Experiment 13 

Scenario  13A 13B 13C 

CASE (0.8d) (1.0d) (1.2d) 

Q (cfs) 0.91 1.21 1.41 

Vu/s (fps) 2.27 2.41 2.36 

Y1 (in) 1.35 1.65 1.85 

Y2 (in) 9.26 10.80 11.50 

Yd/s (in) 2.50 2.85 3.00 

Fr1 5.09 4.80 4.56 

V1 (fps) 9.69 10.10 10.16 

V2 (fps) 2.84 1.64 4.01 

Vd/s (fps) 2.59 5.43 5.67 

∆E (in) 9.88 10.76 10.55 

THL (in) 20.01 16.74 17.23 

E2/E1 0.49 0.51 0.53 
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 Experiment 14 was run with a 2.5-inch sill located 19 inches from the end of the 

culvert and 15 flat-faced friction blocks (FFFBs) at 11 inches from the toe. This 

experiment demonstrates the use of one sill to control the hydraulic jump under 

pressure flow conditions. A hydraulic jump was observed in all three flow conditions. 

The results show that the Froude number values ranged from 4.53 to 4.89. This range 

of Froude number values are indicates an oscillating hydraulic jump. The total head loss 

for the whole culvert ranged from 16.93 inches to 17.23 inches. Additional results can 

be seen in Table 16. 

Table 16. Hydraulic parameters for Experiment 14 

Scenario 14A 14B 14C 

CASE (0.8d) (1.0d) (1.2d) 

Q (cfs) 0.91 1.22 1.41 

Vu/s (fps) 2.18 2.43 2.36 

Y1 (in) 1.65 1.75 2.00 

Y2 (in) 11.10 11.52 12.44 

Yd/s (in) 2.25 2.75 3.00 

Fr1 4.89 4.78 4.53 

V1 (fps) 10.30 10.36 10.49 

V2 (fps) 2.84 4.49 4.63 

Vd/s (fps) 4.91 5.31 5.67 

∆E (in) 11.53 11.56 11.44 

THL (in) 16.93 17.10 17.23 

E2/E1 0.51 0.51 0.53 

 

 

 

 

 

 

 



 

63 

 Experiment 15 was run with a 2.5-inch sill located 19 inches from the end of the 

culvert and 30 FFFBs at 11 inches from the toe. This experiment demonstrates the use 

of one sill to control the hydraulic jump under pressure flow conditions. A hydraulic jump 

was observed in all three flow conditions. The results show that the Froude number 

values ranged from 5.16 for case 15A, to 4.53 for case 15B, which both indicate a 

steady jump, but the Fr1 = 4.22 for case 15C is indicative of an oscillating jump. The 

total head loss for the whole culvert ranged from 15.50 inches to 16.44 inches. 

Additional results can be seen in Table 17. 

Table 17. Hydraulic parameters for Experiment 15 

Scenario 15A 15B 15C 

CASE (0.8d) (1.0d) (1.2d) 

Q (cfs) 0.87 1.25 1.51 

Vu/s (fps) 2.18 2.50 2.52 

Y1 (in) 1.50 2.00 2.25 

Y2 (in) 10.69 12.00 12.00 

Yd/s (in) 2.25 3.00 3.13 

Fr1 5.16 4.53 4.22 

V1 (fps) 10.36 10.49 10.36 

V2 (fps) 1.16 4.24 5.18 

Vd/s (fps) 5.18 5.67 6.45 

∆E (in) 12.09 10.42 8.58 

THL (in) 16.44 16.16 15.50 

E2/E1 0.48 0.55 0.60 
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 Experiment 17 was run with a 1.5-inch sill located 19 inches from the end of the 

culvert and 6 FFFBs 2 × 2 inches at 14 inches from the toe. A hydraulic jump was 

observed in all three flow conditions. The results show that the Froude number values 

ranged from 2.83 to 3.29, which both indicate a oscillating jump. The total head loss for 

the whole culvert ranged from 17.09 inches to 18.26 inches. Additional results can be 

seen in Table 18. 

Table 18. Hydraulic parameters for Experiment 17 

Scenario 17A 17B 17C 

CASE (0.8d) (1.0d) (1.2d) 

Q (cfs) 0.87 1.20 1.52 

Vu/s (fps) 2.18 2.40 2.53 

Y1 (in) 2.00 2.50 3.00 

Y2 (in) 6.89 10.08 11.38 

Yd/s (in) 2.25 3.25 3.13 

Fr1 2.83 3.29 3.19 

V1 (fps) 6.55 8.51 9.05 

V2 (fps) 3.28 2.32 2.46 

Vd/s (fps) 4.83 4.91 5.18 

∆E (in) 2.12 4.32 4.30 

THL (in) 17.09 17.32 18.26 

E2/E1 0.77 0.70 0.71 
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6.2.1 PRESSURE FLOW CONDITIONS USING FRICTION 

BLOCKS 

Experiment 18 was run with a 6 FFFBs 2 × 2 inches located 19 inches from the 

end of the culvert. A hydraulic jump was observed in all three flow conditions. The 

results show that the Froude number values ranged from 4.36 to 5.62, which both 

indicate an oscillating to steady jump. The total head loss for the whole culvert ranged 

from 17.26 inches to 20.10 inches. Additional results can be seen in Table 19. 

Table 19. Hydraulic parameters for Experiment 18 

Scenario 18A 18B 18C 

CASE (0.8d) (1.0d) (1.2d) 

Q (cfs) 0.91 1.20 1.52 

Vu/s (fps) 2.27 2.41 2.53 

Y1 (in) 1.25 1.75 2.13 

Y2 (in) 9.64 11.46 12.00 

Yd/s (in) 3.00 2.65 2.75 

Fr1 5.62 4.76 4.36 

V1 (fps) 10.30 10.32 10.43 

V2 (fps) 5.91 7.68 6.95 

Vd/s (fps) 4.33 4.01 4.33 

∆E (in) 12.53 10.79 9.40 

THL (in) 17.26 19.43 20.10 

E2/E1 0.45 0.51 0.57 
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Experiment 19 was run with a 2 FFFBs 3 × 3 inches located at the end of the 

culvert. A hydraulic jump was observed in all three flow conditions. The results show 

that the Froude number values ranged from 3.33 to 4.72, which both indicate a 

oscillating jump. The total head loss for the whole culvert ranged from 17.57 inches to 

19.03 inches. Additional results can be seen in Table 20. 

Table 20. Hydraulic parameters for Experiment 19 

Scenario 19A 19B 19C 

CASE (0.8d) (1.0d) (1.2d) 

Q (cfs) 0.92 1.20 1.50 

Vu/s (fps) 2.30 2.40 2.49 

Y1 (in) 1.25 1.65 2.25 

Y2 (in) 9.07 10.54 12.00 

Yd/s (in) 3.25 3.50 4.50 

Fr1 5.37 4.71 4.05 

V1 (fps) 9.83 9.92 9.96 

V2 (fps) 1.16 1.37 3.84 

Vd/s (fps) 2.84 4.63 4.01 

∆E (in) 10.54 10.11 8.58 

THL (in) 19.03 17.57 18.86 

E2/E1 0.47 0.52 0.60 
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6.3 OPEN CHANNEL FLOW WITH SLOTTED SILLS 

 Experiment 23 was run with a 3.50-inch slotted sill located 20 inches from the 

end of the culvert. This experiment demonstrates the use of one slotted sill to control 

the hydraulic jump under open channel flow conditions. Experiment 23 was chosen for 

two reasons: (1) a hydraulic jump formed inside the horizontal section of the model for 

all three flow conditions, and (2) it is an example of the field being under open channel 

flow due to the confines of the model. A hydraulic jump was observed in all experiments 

using three flow conditions. The results show that the Froude number values ranged 

from 4.53 to 4.83 which indicated an oscillating jump. The total head loss for the whole 

culvert ranged from 17.36 inches to 17.82 inches. Additional results can be seen in 

Table 21. 

Table 21. Hydraulic parameters for Experiment 23 

Scenario 23A 23B 23C 

CASE (0.8d) (1.0d) (1.2d) 

Q (cfs) 0.88 1.20 1.50 

Vu/s (fps) 2.21 2.40 2.50 

Y1 (in) 1.65 1.85 2.00 

Y2 (in) 8.00 9.25 10.50 

Yd/s (in) 2.85 3.25 4.00 

Fr1 4.83 4.59 4.53 

V1 (fps) 10.16 10.23 10.49 

V2 (fps) 2.01 4.33 5.43 

Vd/s (fps) 4.33 4.63 5.18 

∆E (in) 4.85 5.92 7.31 

THL (in) 17.36 17.82 17.36 

E2/E1 0.52 0.55 0.55 
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 Experiment 24 was run with a 3.5-inch slotted sill 20 inches from the end of the 

culvert and 6 FFFBs 2 × 2 inches at 18 inches from the toe, utilizing the increased 

culvert height of 12 inches. A hydraulic jump was observed in all three flow conditions. 

The results show that the Froude number values ranged from 4.54 for case 24A. This 

indicated a steady jump. For both cases 24B and 24C the Froude numbers were 4.44 

and 4.28 respectfully. This indicated that both were oscillating jumps. The energy loss 

due to hydraulic jump ranged from 5.72 inches to 6.55 inches and the total head loss for 

the whole culvert ranged from 15.10 inches to 16.28 inches. All results can be seen in 

Table 22. 

Table 22. Hydraulic parameters for Experiment 24 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scenario 24A 24B 24C 

CASE 0.8d 1.0d 1.2d 

Q (cfs) 0.92 1.19 1.49 

Vu/s (fps) 2.30 2.39 2.48 

Ys (in) 2.00 2.65 3.50 

Yt (in) 1.65 1.75 2.00 

Y1 (in) 1.65 1.75 2.13 

Y2 (in) 8.50 9.25 10.50 

Yd/s (in) 2.50 2.75 3.50 

Fr1 4.54 4.44 4.28 

V1 (fps) 9.55 9.62 10.23 

V2 (fps) 4.01 5.56 5.18 

Vd/s (fps) 5.18 5.67 6.45 

L (in) 16.00 16.00 15.00 

X (in) 33.00 33.00 29.50 

ΔE (in) 5.72 6.52 6.55 

THL (in) 16.28 16.31 15.10 

E2/E1 0.55 0.56 0.58 

    



 

69 

Experiment 25 was run with a 4.5-inch slotted sill at the end of the culvert. A 

hydraulic jump was observed in all three flow conditions. The results show that the 

Froude number values ranged from 5.37 for case 25A to 4.86 for case 25B, which 

indicated a steady jump. For case 25C the Froude number was 4.33, which indicated an 

oscillating jump. The energy loss due to hydraulic jump ranged from 6.99 inches to 8.97 

inches and the total head loss for the whole culvert ranged from 19.29 inches to 19.72 

inches. The energy dissipation ranges from 0.48 to 0.57. Additional results can be seen 

in Table 23. 

Table 23. Hydraulic parameters for Experiment 25 

Scenario 25A 25B 25C 

CASE 0.8d 1.0d 1.2d 

Q (cfs) 0.89 1.18 1.49 

Vu/s (fps) 2.22 2.37 2.48 

Ys (in) 2.00 2.50 3.50 

Yt (in) 1.50 1.75 2.00 

Y1 (in) 1.25 1.65 2.13 

Y2 (in) 8.50 9.25 10.75 

Yd/s (in) 1.75 2.50 3.00 

Fr1 5.37 4.86 4.33 

V1 (fps) 9.83 10.23 10.36 

V2 (fps) 1.16 1.64 2.01 

Vd/s (fps) 3.47 4.18 4.49 

L (in) 16.00 16.00 18.00 

X (in) 31.00 31.00 29.00 

ΔE (in) 8.97 7.19 6.99 

THL (in) 19.72 19.29 19.59 

E2/E1 0.48 0.52 0.57 
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 Experiment 26 was run with a 4.5-inch slotted sill located at the end of the 

culvert. In addition, 6 FFFBs 2 × 2 inches were placed in the horizontal portion of the 

channel in the pattern at 31 inches from the toe. A hydraulic jump was observed in all 

three flow conditions. The results show that the Froude number values ranged from 

4.42 to 4.97. The Fr1 Case 26A and case 26B indicate a steady type of hydraulic jump, 

but case 26C indicates an oscillating jump. The total head loss due to hydraulic jump 

ranged from 19.97 inches to 21.59 inches and the energy loss for the whole culvert 

ranged from 6.21 inches to 7.31 inches. The efficiency of the hydraulic jump in these 

experiments ranged from 0.51 to 0.56. Additional results can be seen in Table 24. 

Table 24. Hydraulic parameters for Experiment 26 

Scenario 26A 26B 26C 

CASE 0.8d 1.0d 1.2d 

Q (cfs) 0.90 1.20 1.48 

Vu/s (fps) 2.24 2.40 2.47 

Ys (in) 2.00 2.75 3.35 

Yt (in) 1.50 1.75 2.00 

Y1 (in) 1.50 1.75 2.00 

Y2 (in) 8.25 9.50 10.50 

Yd/s (in) 1.50 1.75 2.25 

Fr1 4.97 4.70 4.42 

V1 (fps) 9.96 10.19 10.23 

V2 (fps) 2.32 2.84 4.01 

Vd/s (fps) 3.06 3.28 3.66 

L (in) 16.00 18.00 19.00 

X (in) 47.00 49.00 50.00 

ΔE (in) 6.21 7.00 7.31 

THL (in) 20.49 21.32 21.59 

E2/E1 0.51 0.54 0.56 
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6.4  PRESSURE FLOW WITH SLOTTED SILLS 

 Experiment 27 was run with a 2.50-inch slotted sill located at the end of the 

culvert. This experiment demonstrates the use of one slotted sill to control the hydraulic 

jump under pressure flow conditions.  A hydraulic jump was observed in all three flow 

conditions. The results show that the Froude number values ranged from 4.16 to 4.78. 

Case 27A and 27B indicate a steady type of hydraulic jump, but case 27C indicates an 

oscillating jump. The total head loss for the whole culvert ranged from 13.36 inches to 

19.38 inches. All the results can be seen in Table 25. 

Table 25. Hydraulic parameters for Experiment 27 

Scenario 27A 27B 27C 

CASE 0.8d 1.0d 1.2d 

Q (cfs) 0.89 1.20 1.50 

Vu/s (fps) 2.23 2.41 2.49 

Ys (in) 2.00 2.75 3.25 

Yt (in) 1.50 1.75 2.13 

Y1 (in) 1.50 1.75 2.25 

Y2 (in) 9.56 11.52 12.00 

Yd/s (in) 2.50 3.50 4.00 

Fr1 4.76 4.78 4.16 

V1 (fps) 9.55 10.36 10.23 

V2 (fps) 3.84 3.47 3.28 

Vd/s (fps) 3.15 3.66 6.95 

L (in) 11.00 11.00 13.00 

X (in) 13.00 16.00 20.00 

ΔE (in) 9.13 11.56 8.58 

THL (in) 19.38 19.08 13.36 

E2/E1 0.52 0.51 0.60 
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 Experiment 28 was run with a 2.50-inch slotted sill located at the end of the 

culvert and 6 FFFBs 2 × 2 inches placed in the horizontal portion of the channel in the 

pattern at 28 inches from the toe. A hydraulic jump was observed in all three flow 

conditions. The results show that the Froude number values ranged from 4.32 to 4.97. 

Case 28A and 28B indicated a steady type of hydraulic jump, but case 28C indicated an 

oscillating jump. The total head loss for the whole culvert ranged from 18.36 inches to 

20.33 inches. All results can be seen in Table 26. 

Table 26. Hydraulic parameters for Experiment 28 

Scenario 28A 28B 28C 

CASE 0.8d 1.0d 1.2d 

Q (cfs) 0.94 1.20 1.50 

Vu/s (fps) 1.57 2.00 2.50 

Ys (in) 2.13 2.50 3.50 

Yt (in) 1.65 2.00 2.13 

Y1 (in) 1.50 1.85 2.25 

Y2 (in) 10.13 11.82 12.00 

Yd/s (in) 1.75 2.00 2.50 

Fr1 4.97 4.65 4.32 

V1 (fps) 9.96 10.36 10.62 

V2 (fps) 3.06 7.68 8.11 

Vd/s (fps) 3.06 3.84 5.43 

L (in) 12.00 12.00 16.00 

X (in) 40.00 41.00 44.00 

ΔE (in) 10.56 11.32 8.58 

THL (in) 19.76 20.00 18.36 

E2/E1 0.50 0.52 0.60 
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 Experiment 29 was run with a 3-inch slotted sill located 25 inches from the end of 

the culvert. This experiment demonstrated the use of one slotted sill to control the 

hydraulic jump under pressure flow conditions.  A hydraulic jump was observed in all 

three flow conditions. The results show that the Froude number values ranged from 

4.47 to 4.91. All Froude number values are indicative of a steady jump. The total head 

loss for the whole culvert ranges from 18.30 inches to 21.11 inches. Additional results 

can be seen in Table 27. 

Table 27. Hydraulic parameters for Experiment 29 

Scenario 29A 29B 29C 

CASE 0.8d 1.0d 1.2d 

Q (cfs) 0.93 1.18 1.50 

Vu/s (fps) 2.32 2.37 2.50 

Ys (in) 2.00 2.50 3.50 

Yt (in) 1.50 1.85 2.00 

Y1 (in) 1.60 1.75 2.00 

Y2 (in) 10.74 11.83 12.00 

Yd/s (in) 3.00 3.00 3.50 

Fr1 4.91 4.87 4.47 

V1 (fps) 10.16 10.55 10.36 

V2 (fps) 5.67 4.63 6.13 

Vd/s (fps) 3.66 3.84 3.06 

L (in) 12.00 12.00 18.00 

X (in) 14.50 16.00 26.00 

ΔE (in) 11.11 12.37 10.42 

THL (in) 18.30 19.29 21.11 

E2/E1 0.50 0.50 0.55 
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Experiment 30 was run with a 3-inch slotted sill located 25 inches from the end of 

the culvert and 6 FFFBs 2 × 2 inches placed in the horizontal portion of the channel in 

the pattern at 18 inches from the toe. This experiment demonstrated the use of one 

slotted sill to control the hydraulic jump under pressure flow conditions. This experiment 

produced a hydraulic jump for all three conditions. A hydraulic jump was observed in all 

three flow conditions. The results show that the Froude number values ranged from 

4.11 to 4.53. Case 30A is indicative of a steady type of hydraulic jump, but cases 30B 

and 30C are indicative of oscillating jump. The total head loss for the whole culvert 

ranged from 16.48 inches to 19.35 inches. All the results can be seen in Table 28. 

Table 28. Hydraulic parameters for Experiment 30 

Scenario 30A 30B 30C 

CASE 0.8d 1.0d 1.2d 

Q (cfs) 0.90 1.22 1.49 

Vu/s (fps) 2.24 2.43 2.48 

Ys (in) 2.00 2.50 3.50 

Yt (in) 1.85 2.00 2.25 

Y1 (in) 1.85 2.00 2.25 

Y2 (in) 11.39 11.11 12.00 

Yd/s (in) 2.75 3.00 3.50 

Fr1 4.53 4.18 4.11 

V1 (fps) 10.10 9.69 10.10 

V2 (fps) 5.91 5.31 4.33 

Vd/s (fps) 4.91 5.31 4.33 

L (in) 14.00 15.00 17.00 

X (in) 27.00 29.00 29.00 

ΔE (in) 10.30 8.51 9.23 

THL (in) 16.48 16.85 19.35 

E2/E1 0.54 0.58 0.58 
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Experiment 31 was run with a 6 FFFBs 2 × 2 inches placed in the horizontal 

portion of the channel in the pattern located 18 inches from the toe of the culvert. This 

experiment demonstrated the use of six FFFBs to control the hydraulic jump under 

pressure flow conditions.  A hydraulic jump was observed in all three flow conditions. 

The results show that the Froude number values ranged from 4.47 to 5.66. All Froude 

number values are indicative of a steady jump. The total head loss for the whole culvert 

ranges from 16.99 inches to 17.11 inches. Additional results can be seen in Table 29. 

Table 29. Hydraulic parameters for Experiment 31 

Scenario 31A 31B 31C 

CASE 0.8d 1.0d 1.2d 

Q (cfs) 0.90 1.23 1.50 

Vu/s (fps) 2.24 2.45 2.49 

Ys (in) 1.75 2.50 2.50 

Yt (in) 1.25 1.75 2.13 

Y1 (in) 1.25 1.75 2.13 

Y2 (in) 9.73 11.83 12.00 

Yd/s (in) 2.75 3.25 2.00 

Fr1 5.66 4.87 4.47 

V1 (fps) 10.36 10.55 10.68 

V2 (fps) 4.91 4.63 2.59 

Vd/s (fps) 4.63 5.08 5.67 

L (in) 10.00 9.00 13.00 

X (in) 12.00 12.00 14.00 

ΔE (in) 12.53 12.37 9.40 

THL (in) 16.99 17.07 16.86 

E2/E1 0.45 0.50 0.57 

 

 

 

 



 

76 

Experiment 32 was run with a 2 FFFBs 3 × 3 inches located at the end of the 

culvert. This experiment demonstrated the use of two FFFBs to control the hydraulic 

jump under pressure flow conditions. This experiment produced a hydraulic jump for all 

three conditions. A hydraulic jump was observed in all three flow conditions. The results 

show that the Froude number values ranged from 4.53 to 5.09. The Froude number is 

indicative of a steady type of hydraulic jump. The total head loss for the whole culvert 

ranged from 17.86 inches to 20.34 inches. All the results can be seen in Table 30. 

Table 30. Hydraulic parameters for Experiment 32 

Scenario 32A 32B 32C 

CASE 0.8d 1.0d 1.2d 

Q (cfs) 0.90 1.23 1.50 

Vu/s (fps) 2.24 2.47 2.49 

Ys (in) 2.00 2.50 3.50 

Yt (in) 1.50 1.75 2.25 

Y1 (in) 1.35 1.75 2.00 

Y2 (in) 9.26 11.66 12.00 

Yd/s (in) 1.75 2.25 2.50 

Fr1 5.09 4.82 4.53 

V1 (fps) 9.69 10.45 10.49 

V2 (fps) 2.32 3.06 4.33 

Vd/s (fps) 3.06 4.18 5.67 

L (in) 9.00 11.00 14.00 

X (in) 9.00 13.00 22.00 

ΔE (in) 9.88 11.93 10.42 

THL (in) 20.34 19.63 17.86 

E2/E1 0.49 0.51 0.55 
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7 Results  

 The main purpose of this report is to find optimum energy dissipation in open 

channel and pressure flow conditions for middle and end sill with regular and slotted sill 

and combined sill with FFFBs. In these experiments, the optimum end sill height was 

determined first. Second, the sill moved to the middle to get the optimum sill location. 

Finally the effectiveness of friction blocks in combination with the optimum regular and 

slotted sill parameters were determined. For all experiments the determining factor for 

effectiveness is the energy dissipation E2/E1. Experiments 4 and 14 with 15 FFFBs were 

chosen instead of experiments 10 and 15 with 30 FFFBs because there was no 

significant difference in energy by adding an additional 15 FFFB. It would also not be 

economically feasible to build the extra friction blocks for the design cost.  Ultimately the 

friction blocks do minimal energy dissipation and the experiments using just the sill 

would be more cost effective. Also, 2 × 2 inches, 3 × 3 inches, and 4 × 4 inches were 

tested regular and slotted sill. 
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7.1 OPEN CHANNEL FLOW CONDITIONS FOR REGULAR 

SILLS 

 After careful evaluation, Experiment 3 was selected from the data analysis 

portion for open channel flow conditions. This experiment used a middle sill and was 

selected by analyzing several factors, including the relatively low downstream velocities, 

high total hydraulic head losses, acceptable hydraulic jump efficiency, and possible 

reduction in channel length. This experiment consisted of a 3.5-inch sill located 20 

inches from the end of the culvert. It was found that this experiment yielded results most 

applicable to the new construction of culverts due to the increased ceiling height of the 

culvert. The culvert barrel could be reduced by reducing a section at the end of the 

channel where the water surface profile is more uniform. The reduction of culvert length 

could be 30 feet for the three cases of the experiment. Figure 22 shows characteristics 

of the hydraulic jump for Experiment 3A. Figure 23 shows the characteristics of 

Experiment 3B, and Figure 24 shows Experiment 3C characteristics. The results are 

shown in Table 31. 

Table 31. Selected factors for Experiment 3 

 

 

 

 

 

 

 

Scenario 3A 3B 3C 

CASE 0.8d 1.0d 1.2d 

Q (cfs) 0.91 1.22 1.50 

Vu/s (fps) 2.26 2.43 2.49 

Y1 (in) 1.35 1.75 2.25 

Y2 (in) 8.50 9.75 10.75 

Fr1 5.09 4.60 3.77 

V1 (fps) 9.69 9.96 9.27 

V2 (fps) 2.83 3.06 6.13 

ΔE (in) 7.96 7.50 6.35 

THL (in) 15.57 15.60 16.51 

E2/E1 0.50 0.55 0.64 
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Figure 22. Hydraulic jump characteristics for Experiment 3A 

 

Figure 23. Hydraulic jump characteristics for Experiment 3B 

 

Figure 24. Hydraulic jump characteristics for Experiment 3C 
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 Experiment 4 was selected from the data analysis portion for an open channel 

flow conditions. This experiment was selected by examining many factors, including the 

relatively low downstream velocities, high total hydraulic head losses, acceptable 

hydraulic jump efficiency, and possible reduction in channel length. This experiment 

consisted of a 3.5-inch sill 20 inches from the end of the culvert with 15 flat faced-friction 

blocks.  Experiment 4 was chosen using 15 FFFBs over the 30 or 45 FFFBs because 

the increase to 30 FFFBs had drawn hydraulic jump. With this experiment, it was not 

found that the friction blocks represented increase in the energy dissipation; therefore, 

they are not economically or practically adequate to the culvert. The culvert barrel could 

be reduced by reducing a section at the end of the channel where the water surface 

profile is more uniform. Selected factors for the experiments are included in Table 32. 

Table 32. Selected factors for Experiment 4 

Scenario 4A 4B 4C 

CASE 0.8d 1.0d 1.2d 

Q (cfs) 0.91 1.23 1.50 

Vu/s (fps) 2.26 2.45 2.50 

Y1 (in) 1.50 1.75 2.00 

Y2 (in) 8.75 9.00 9.00 

Yd/s (in) 2.50 3.25 3.50 

Fr1 4.83 4.72 4.53 

V1 (fps) 9.69 10.23 10.49 

V2 (fps) 3.66 4.17 5.18 

ΔE (in) 7.26 6.05 4.76 

THL (in) 15.75 12.87 14.62 

E2/E1 0.52 0.53 0.55 

 

 

 



 

81 

 Experiment 8 was selected from the data analysis portion for an open channel 

flow conditions. This experiment was selected by examining many factors, including the 

relatively low downstream velocities, high total hydraulic head losses, acceptable 

hydraulic jump efficiency, and possible reduction in channel length. This experiment 

consisted of a 4-inch sill at the end of the culvert.  Experiment 8 was chosen instead of 

Experiment 10 because the increase to 30 FFFBs had no increase in energy 

dissipation. It was found that Experiment 8 yielded results most applicable to the 

existing construction of culverts due to the increased ceiling height of the culvert. 

Selected factors for the experiments are included in Table 33. 

Table 33. Selected factors for Experiment 8 

Scenario 8A 8B 8C 

CASE 0.8d 1.0d 1.2d 

Q (cfs) 0.87 1.20 1.43 

Vu/s (fps) 2.18 2.41 2.39 

Y1 (in) 1.50 1.75 1.85 

Y2 (in) 8.50 9.65 10.35 

Fr1 4.90 4.29 4.30 

V1 (fps) 9.83 9.55 9.96 

V2 (fps) 2.32 2.59 2.84 

ΔE (in) 6.73 6.65 7.03 

THL (in) 18.94 18.58 20.26 

E2/E1 0.52 0.58 0.58 
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 Experiment 9 was selected from the data analysis portion for an open channel 

flow conditions. This experiment consisted of a 4-inch sill at the end of the culvert with 

15 FFFBs at 25 inched from the toe.  Experiment 9 was chosen instead of Experiment 

10 because the increase to 30 FFFBs had no increase in energy dissipation. With this 

experiment, it was not found that the friction blocks represented increase in the energy 

dissipation; therefore, they are not economically or practically adequate to the culvert. 

Selected factors for the experiments are included in Table 34. 

Table 34. Selected factors for Experiment 9 

Scenario 9A 9B 9C 

CASE 0.8d 1.0d 1.2d 

Q (cfs) 0.94 1.21 1.68 

Vu/s (fps) 2.34 2.41 2.79 

Yt (in) 1.75 1.75 2.25 

Y1 (in) 1.75 1.85 2.13 

Y2 (in) 8.25 9.50 10.25 

Fr1 4.34 4.50 4.28 

V1 (fps) 9.41 10.03 10.23 

V2 (fps) 3.06 4.33 2.84 

ΔE (in) 4.76 6.37 6.13 

THL (in) 18.82 18.84 18.66 

E2/E1 0.57 0.55 0.58 

  



 

83 

7.2 PRESSURE FLOW CONDITIONS FOR REGULAR SILLS 

 After careful evaluation, Experiment 13 was selected from the data analysis 

portion for pressure flow conditions. This experiment was selected by examining many 

factors, including the relatively low downstream velocities, high total hydraulic head 

losses, and possible reduction in channel length. This experiment consisted of a 2.50-

inch sill 19 inches from the end of the culvert. It was found that this experiment yielded 

results most applicable to modifying existing culverts with the addition of sills and/or 

friction blocks. The culvert barrel could be reduced by reducing a section at the end of 

the channel where the water surface profile is more uniform which is 30 feet. Figure 25 

shows characteristics of the hydraulic jump for Experiment 13A, Figure 26 shows 

Experiment 13B, and Figure 27 shows Experiment 13C; all are included in Table 35. 

Table 35. Selected factors for Experiment 13 

Scenario  13A 13B 13C 

CASE (0.8d) (1.0d) (1.2d) 

Q (cfs) 0.91 1.21 1.41 

Vu/s (fps) 2.27 2.41 2.36 

Y1 (in) 1.35 1.65 1.85 

Y2 (in) 9.26 10.80 11.50 

Fr1 5.09 4.80 4.56 

V1 (fps) 9.83 10.10 10.16 

V2 (fps) 2.84 1.64 4.01 

∆E (in) 9.88 10.76 10.55 

THL (in) 20.01 16.74 17.23 

E2/E1 0.49 0.51 0.53 
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Figure 25. Hydraulic jump characteristics for Experiment 13A 

 

Figure 26. Hydraulic jump characteristics for Experiment 13B 

 

Figure 27. Hydraulic jump characteristics for Experiment 13C 
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 Experiment 14 was selected from the data analysis portion for pressure flow 

conditions. This experiment was selected by examining many factors; including the 

relatively low downstream velocities, high total hydraulic head losses, and possible 

reductions in channel length. This experiment consisted of a 2.50-inch sill 19 inches 

from the end of the culvert with 15 FFFBs at 11 inches from the toe. It was found that 

these experiment yielded results most applicable to modifying existing culverts with the 

addition of sills and/or friction blocks. The culvert barrel could be reduced by reducing a 

section at the end of the channel where the water surface profile is more uniform which 

is 30 feet. The characteristics of the hydraulic jump for Experiment 14 are in Table 36. 

Table 36. Selected factors for Experiment 14 

Scenario 14A 14B 14C 

CASE (0.8d) (1.0d) (1.2d) 

Q (cfs) 0.91 1.22 1.41 

Vu/s (fps) 2.18 2.43 2.36 

Y1 (in) 1.65 1.75 2.00 

Y2 (in) 11.10 11.52 12.00 

Fr1 4.89 4.78 4.53 

V1 (fps) 10.30 10.36 10.49 

V2 (fps) 2.84 4.49 4.63 

∆E (in) 11.53 11.56 11.44 

THL (in) 16.94 17.10 17.23 

E2/E1 0.50 0.51 0.53 
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 Experiment 12 was selected from the data analysis portion for pressure flow 

conditions. This experiment was selected by examining many factors; including the 

relatively low downstream velocities, high total hydraulic head losses, and possible 

reductions in channel length. This experiment consisted of a 2.50-inch sill located at the 

end of the culvert. It was found that these experiment yielded results most applicable to 

modifying existing culverts with the addition of sills and/or friction blocks. Experiment 12 

was chosen instead of adding 30 or 45 FFFBs because the increase to 30 or 45 friction 

blocks had a drawn hydraulic jump, which mean the jump formatted in the slant part. 

The characteristics of the hydraulic jump for Experiment 12 are in Table 37. 

Table 37. Selected factors for Experiment 12 

Scenario  12A 12B 12C 

CASE (0.8d) (1.0d) (1.2d) 

Q (cfs) 0.92 1.22 1.50 

Vu/s (fps) 2.30 2.43 2.50 

Y1 (in) 1.20 1.65 2.00 

Y2 (in) 8.88 10.60 12.00 

Yd/s (in) 2.50 3.00 3.50 

Fr1 5.47 4.74 4.53 

V1 (fps) 9.83 9.96 10.49 

V2 (fps) 4.91 4.63 5.18 

Vd/s (fps) 3.50 4.01 6.95 

∆E (in) 10.63 10.26 10.42 

THL (in) 21.28 19.10 13.87 

E2/E1 0.46 0.52 0.55 
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 Experiment 17 was selected from the data analysis portion for pressure flow 

conditions. This experiment was selected by examining many factors; including the 

relatively low downstream velocities, high total hydraulic head losses, and possible 

reductions in channel length. This experiment consisted of a 1.50-inch sill 19 inches 

from the end of the culvert with 6 FFFBs 2 × 2 inches at 14 inches from the toe. It was 

found that these experiments with big FFFBs increased the energy dissipation around 

15%. The culvert barrel could be reduced by reducing a section at the end of the 

channel where the water surface profile is more uniform which is 30 feet. The 

characteristics of the hydraulic jump for Experiment 17 are in Table 38. 

 

Table 38. Selected factors for Experiment 17 

Scenario 17A 17B 17C 

CASE (0.8d) (1.0d) (1.2d) 

Q (cfs) 0.87 1.20 1.52 

Vu/s (fps) 2.18 2.40 2.53 

Y1 (in) 2.00 2.50 3.00 

Y2 (in) 6.89 10.08 11.38 

Fr1 2.83 3.29 3.19 

V1 (fps) 6.55 8.51 9.05 

V2 (fps) 3.28 2.32 2.46 

∆E (in) 2.12 4.32 4.30 

THL (in) 17.09 17.32 18.26 

E2/E1 0.78 0.72 0.74 
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7.3 OPEN CHANNEL FLOW CONDITIONS FOR SLOTTED 

SILLS 

After careful evaluation, Experiment 21 was not selected for analysis because six 

large friction blocks are not practical or economical. Experiment 23 was selected from 

the data analysis portion for open channel flow conditions. This experiments was 

selected by examining many factors, including the relatively low downstream velocities, 

high total hydraulic head losses, acceptable hydraulic jump efficiency, and possible 

reduction in channel length. This experiment consisted of a 3.50-inch slotted sill 20 

inches from the end of the culvert. It was found that this experiment yielded results most 

applicable to the new construction of culverts due to the increased ceiling height of the 

culvert. The culvert barrel could be reduced by reducing a section at the end of the 

channel where the water surface profile is more uniform. Figures 28, 29, and 30 show 

the hydraulic jump characteristics for Experiment 23; all are included in Table 39. 

 

Table 39. Selected factors for Experiment 23 

Scenario 23A 23B 23C 

CASE (0.8d) (1.0d) (1.2d) 

Q (cfs) 0.88 1.20 1.50 

Vu/s (fps) 2.21 2.40 2.50 

Y1 (in) 1.65 1.85 2.00 

Y2 (in) 8.00 9.25 10.50 

Fr1 4.83 4.59 4.53 

V1 (fps) 10.16 10.23 10.49 

V2 (fps) 2.01 4.33 5.43 

∆E (in) 4.85 5.92 7.31 

THL (in) 17.36 17.82 17.36 

E2/E1 0.52 0.55 0.55 
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Figure 28. Hydraulic jump characteristics for Experiment 23A 

 

Figure 29. Hydraulic jump characteristics for Experiment 23B 

 

Figure 30. Hydraulic jump characteristics for Experiment 23C 
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 Experiment 24 was selected from the data analysis portion for open channel flow 

conditions. This experiment was selected by examining many factors, including the 

relatively low downstream velocities, high total hydraulic head losses, acceptable 

hydraulic jump efficiency, and possible reduction in channel length. This experiment 

consisted of a 3.50-inch slotted sill 20 inches from the end of the culvert with 6 FFFBs 2 

× 2 inches at 18 inches from the toe. With this experiment, it was found that the friction 

blocks represented only a 2% increase in the energy dissipation; therefore they are not 

economically or practically adequate to the culvert. The culvert barrel could be reduced 

by reducing a section at the end of the channel where the water surface profile is more 

uniform. Selected factors for the experiments are included in Table 40. 

 

Table 40. Selected factors for Experiment 24 

 

 

 

 

 

 

 

 

  

 

 

 

 

Scenario 24A 24B 24C 

CASE 0.8d 1.0d 1.2d 

Q (cfs) 0.92 1.19 1.49 

Vu/s (fps) 2.30 2.39 2.48 

Y1 (in) 1.65 1.75 2.13 

Y2 (in) 8.50 9.25 10.50 

Fr1 4.54 4.44 4.28 

V1 (fps) 9.55 9.62 10.23 

V2 (fps) 4.01 5.56 5.18 

ΔE (in) 5.73 6.52 6.55 

THL (in) 16.28 16.31 15.10 

E2/E1 0.55 0.56 0.58 
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 Experiment 25 was selected from the data analysis portion for open channel flow 

conditions. This experiment consisted of a 4.50-inch slotted sill at the end of the culvert. 

The culvert barrel could not be reduced by reducing a section at the end of the channel. 

It was found that this experiment yielded results most applicable to the new and existing 

construction of culverts due to the increased ceiling height of the culvert. Selected 

factors for the experiments are included in Table 41. Figures 31, 32, and 33 show the 

hydraulic jump characteristics for Experiment 23 

Table 41. Selected factors for Experiment 25 

Scenario 25A 25B 25C 

CASE 0.8d 1.0d 1.2d 

Q (cfs) 0.89 1.18 1.49 

Vu/s (fps) 2.22 2.37 2.48 

Y1 (in) 1.25 1.65 2.13 

Y2 (in) 8.50 9.25 10.75 

Fr1 5.37 4.86 4.33 

V1 (fps) 9.83 10.23 10.36 

V2 (fps) 1.16 1.64 2.01 

ΔE (in) 8.97 7.19 6.99 

THL (in) 19.72 19.29 19.59 

E2/E1 0.48 0.52 0.57 
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Figure 31. Hydraulic jump characteristics for Experiment 25A 

 

Figure 32. Hydraulic jump characteristics for Experiment 25B 

 

Figure 33. Hydraulic jump characteristics for Experiment 25C 
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7.4  PRESSURE FLOW CONDITIONS FOR SLOTTED SILL 

 After careful evaluation, Experiment 27 was selected from the data analysis 

portion for pressure flow conditions. This experiment was selected by examining many 

factors, including the relatively low downstream velocities, high total hydraulic head 

losses, and possible reduction in channel length. This experiment consists of a 2.50-

inch slotted sill at the end of the culvert. It was found that this experiment yielded results 

most applicable to modifying existing culverts with the addition of sills and/or friction 

blocks. The culvert barrel could not be reduced by shortening a section at the end of the 

channel. Figure 34, 35, and 36 show the hydraulic jump characteristics for Experiment 

27; selected factors for the experiments are included in Table 42. 

Table 42. Selected factors for Experiment 27 

Scenario 27A 27B 27C 

CASE 0.8d 1.0d 1.2d 

Q (cfs) 0.89 1.20 1.50 

Vu/s (fps) 2.23 2.41 2.49 

Y1 (in) 1.50 1.75 2.25 

Y2 (in) 9.56 11.52 12.00 

Fr1 4.76 4.78 4.16 

V1 (fps) 9.55 10.36 10.23 

V2 (fps) 3.84 3.47 3.28 

ΔE (in) 9.13 11.56 8.58 

THL (in) 19.38 19.08 13.36 

E2/E1 0.52 0.51 0.60 
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Figure 34. Hydraulic characteristics of Experiment 27A 

 

Figure 35. Hydraulic characteristics of Experiment 27B 

 

Figure 36. Hydraulic characteristics of Experiment 27C 
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Experiment 28 was selected from the data analysis portion for pressure flow 

conditions. This experiment consisted of a 2.50-inch slotted sill at the end of the culvert 

with 6 FFFBs 2 × 2 inches at 28 inches from the toe of the culvert. It was found that 

these experiments yielded results most applicable to modifying existing culverts with the 

addition of sills and/or friction blocks. The culvert barrel could not be reduced by 

shortening a section at the end of the channel. The characteristics of the hydraulic jump 

for Experiment 28 are shown in Table 43. 

Table 43. Selected factors for Experiment 28 

Scenario 28A 28B 28C 

CASE 0.8d 1.0d 1.2d 

Q (cfs) 0.94 1.20 1.50 

Vu/s (fps) 1.57 2.00 2.50 

Y1 (in) 1.50 1.85 2.00 

Y2 (in) 10.13 11.82 12.00 

Fr1 4.97 4.65 4.32 

V1 (fps) 9.96 10.36 10.62 

V2 (fps) 3.06 7.68 8.11 

ΔE (in) 10.56 11.32 10.42 

THL (in) 20.33 20.32 18.36 

E2/E1 0.50 0.52 0.60 
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 Experiment 29 was selected from the data analysis portion for pressure flow 

conditions. This experiment was selected by examining many factors, including the 

relatively low downstream velocities, high total hydraulic head losses, and possible 

reduction in channel length. This experiment consists of a 3-inch slotted sill located 25 

inches from the end of the culvert. It was found that this experiment yielded results most 

applicable to modifying existing culverts with the addition of sills and/or friction blocks. 

The culvert barrel could be reduced by shortening a section at the end of the channel 

which is between 35 to 40 feet. Figure 37, 38, and 39 show the hydraulic jump 

characteristics for Experiment 29; selected factors for the experiments are included in 

Table 44. 

Table 44. Selected factors for Experiment 29 

Scenario 29A 29B 29C 

CASE 0.8d 1.0d 1.2d 

Q (cfs) 0.93 1.18 1.50 

Vu/s (fps) 2.32 2.37 2.50 

Y1 (in) 1.60 1.75 2.00 

Y2 (in) 10.74 11.82 12.00 

Fr1 4.91 4.87 4.47 

V1 (fps) 10.16 10.55 10.36 

V2 (fps) 5.67 4.63 6.13 

ΔE (in) 11.11 12.36 10.42 

THL (in) 18.30 19.29 21.11 

E2/E1 0.50 0.50 0.55 
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Figure 37. Hydraulic jump characteristics for Experiment 29A 

 

Figure 38. Hydraulic jump characteristics for Experiment 29B 

 

Figure 39. Hydraulic jump characteristics for Experiment 29C 
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 Experiment 30 was selected from the data analysis portion for pressure flow 

conditions. This experiment consisted of a 3-inch slotted sill at the end of the culvert 

with 6 FFFBs 2 × 2 inches at 18 inches from the toe of the culvert. It was found that 

these experiments yielded results most applicable to modifying existing culverts with the 

addition of sills and/or friction blocks. The culvert barrel could be reduced by shortening 

a section at the end of the channel which is 35 to 40 feet. The characteristics of the 

hydraulic jump for Experiment 30 are shown in Table 45. 

Table 45. Hydraulic parameters for Experiment 30 

Scenario 30A 30B 30C 

CASE 0.8d 1.0d 1.2d 

Q (cfs) 0.90 1.22 1.49 

Vu/s (fps) 1.49 2.03 2.48 

Y1 (in) 1.85 2.00 2.25 

Y2 (in) 11.39 11.11 12.00 

Fr1 4.53 4.18 4.11 

V1 (fps) 10.10 9.69 10.10 

V2 (fps) 5.91 5.31 4.33 

ΔE (in) 10.30 8.51 9.23 

THL (in) 16.49 16.85 19.35 

E2/E1 0.54 0.58 0.58 
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7.5  OBSERVATIONS OF REGULAR AND SLOTTED SILLS 

Two sill types were used in this experiment. One was the regular sill and the 

other was the slotted sill.  The regular sill is a rectangular shape with two small orifices 

on the bottom of the sill seen in Figure 40.  The slotted sill is made of two identical 

shapes that are rectangular and have one small orifice on the bottom of each piece. The 

slotted sill is similar to the regular sill other than there is a gap in the middle of the 

slotted sill allowing water and debris to pass through as seen in Figure 41. 

The slotted sill was designed to do everything the regular sill does, but allow 

some additional water, sediments, and debris to pass through so there would be less 

build up behind the sill.  It was believed that the slotted sill could be adjusted to provide 

energy dissipation similar to that of the regular sill. After experimentation it was found 

that a model height increase of one half inch of the slotted sill vs. the regular sill gave 

nearly identical energy dissipation results. The one half inch increase in the model size 

translates to 0.833 feet in full scale. 
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Figure 40. Regular Sill 

 

Figure 41. Slotted Sill 
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8 Conclusions 

8.1   REGULAR SILL 

 A laboratory model was constructed to represent a broken-back culvert. The 

idealized prototype contains a 1 (vertical) to 2 (horizontal) slope, a 60-foot horizontal 

length steep section of culvert continuing down to a 90-foot mild section of the culvert. 

The mild section is built with a slope of 1 percent. The model was made to 1:20 scale. 

The following dimensions are in terms of the prototype culvert. It was noted that the 

current practice of not using any energy dissipaters (as in Experiment 1) allowed all the 

energy to flow through the culvert instead of reducing or dissipating it. The following 

conclusions can be drawn based on the laboratory experiments for open channel flow 

conditions.  

8.1.1   OPEN CHANNEL FLOW CONDITIONS 

1) For new culvert construction, Experiment 3 is the best option for open channel 

 flow conditions. This option includes one 5.83-foot sill with two small orifices at 

 the bottom for draining the culvert completely located 33.33 feet from the end of 

 the culvert. The height of the culvert should be at least 17.92 feet to allow open 

 channel condition in the culvert. 

2) If one sill 5.83 feet high is placed in the flat part of the culvert, it results in 64 

 percent energy dissipation as seen in Experiment 3C in Figure 23 and Table 25. 

3) If one sill 5.83 feet high with 15 flat-faced friction blocks is placed in the flat part 

 of the culvert starting at the initiation of the hydraulic jump, energy dissipation of 

 55 percent occurs as seen in Experiment 4C. 

4) The reduction of energy due to friction blocks is marginal. The optimal 5.83-foot 

 sill is the most economical option. 

5) Experiment 3 shows an opportunity to reduce the culvert length at the end in the 

 range of 30 to 33 feet. The 30-foot reduction was determined by eliminating the 
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 downstream segment of the culvert where the water surface is no longer uniform 

 after the jump. The 43-foot reduction results from removing a portion of the 

 downstream culvert from the sill to the beginning of the downstream wing-wall 

 section. This option is important if there are problems with the right-of-way. 

6) The difference of efficiency when flat-faced friction blocks were used varied by 

 only 1%. The energy loss ranged between 6.35 feet to 7.96 feet. 

7) For existing and new culvert construction, Experiment 8 is the best option for end 

sill. This option includes one 6.67-foot end sill. The height of the culvert should 

be at least 17.25 feet to allow open channel condition in the culvert. 

8) If one end sill 6.67 feet high is placed in the end the culvert, it results in 58 

 percent energy dissipation as seen in Experiment 8C.  

9)  If one end sill 6.67 feet high with 15 flat-faced friction blocks is placed in the flat 

part of the culvert, energy dissipation of 58 percent occurs, so that friction block 

affect marginal on energy dissipation.  

10) The optimal friction block height for 30-foot drop is a 3.33 feet (2 inch) friction 

block. The 1.67 feet (1 inch) friction block most often created a sky jump, and the 

friction blocks of larger sizes acted like a sill. 
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8.1.2   PRESSURE FLOW CONDITIONS 

 Formation of a hydraulic jump is used in reducing downstream degradation of 

broken-back culverts. A broken-back culvert is used in areas of high relief and steep 

topography as it has one or more breaks in the profile slope. The advantage of a culvert 

is to safely pass water underneath the roadways constructed in hilly topography or on 

the side of a relatively steep hill. A laboratory model was constructed to represent a 

150-foot broken-back culvert. The drop between upstream and downstream was 30 

feet. The idealized prototype contains a 1 (vertical) to 2 (horizontal) slope, a 60-foot 

horizontal length of the slanted part of the culvert continuing down to a 90-foot flat 

culvert with a 1 percent slope. The prototype for these experiments was a two-barrel, 

10-foot by 10-foot reinforced concrete culvert. The model was made to 1:20 scale. The 

following dimensions are in terms of the prototype culvert. The following conclusions 

can be drawn based on the laboratory experiments for pressure flow conditions: 

1) For retrofitting an existing culvert, Experiment 13 is the best option using a 

 regular sill, a 4.17-foot sill 31.67 feet from the end of the culvert.  

2) Optimal placement of the sill, 4.17 feet high, resulted in 28.72 feet THL and 

energy dissipation of 53 percent as shown in Experiment 13C. 

3) For Experiment 13, reductions in culvert length can be made between 25 feet to 

 30 feet, as seen in Table 15 and 35. 

4) If one 4.17-foot sill at 31.67 feet from the end of the culvert and 15 flat-faced 

 friction blocks are placed in the flat section of the culvert starting at the formation 

 of the hydraulic jump, the THL is 28.72 feet and energy dissipation is 53 percent 

 as seen in Experiment 35C. 

5) The reduction of energy due to the region of friction blocks is marginal. 

6) For existing and new construction of culvert, the best end sill option is 

Experiment 12, which consisted of 4.17-foot sill at the end of culvert, resulted in 

28.72 feet THL and energy dissipation of 55 percent as shown in Experiment 

12C, as seen in Table 37. 
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8.2   SLOTTED SILL 

 The slotted sill has one cut in the middle and contains two small orifices at the 

bottom of the other parts to allow the culvert to completely drain and to use the middle 

cut to clean up the sediment behind the slotted sill. Slotted sills were used in the middle 

and the end of the culvert. Also, the impact of friction blocks was found to be minimal. 

No friction blocks were used to further dissipate the energy. The following conclusions 

can be drawn based on the laboratory experiments for open channel and pressure flow 

conditions: 

8.2.1   OPEN CHANNEL FLOW CONDITIONS 

1) The slotted sill is easier to access and clean due to the opening. 

2) Slotted sills can dissipate energy levels similar to a traditional (regular) sill if the 

slotted sill is raised 0.5 inches in the model or 0.8333 feet in full scale. 

3) Experiment 23 is the best option for the middle slotted sill. This option 

 includes one 5.83-foot slotted sill located 33.33 feet from the end of the culvert. It 

 results in 55  percent of energy dissipation in case 23C. 

4) Experiment 24 is Experiment 23 with 6 flat-face friction blocks 3.33 × 3.33 feet (2 

× 2 inches). It results in 58  percent of energy dissipation in case 24C. The energy 

dissipation due to friction block is 3%  

5) Experiment 25 is the best option for the end sill. Experiment 25 includes one 7.5 

feet slotted end sill. It results in 57 percent of energy dissipation in case 25C. 

6) Experiment 26 is Experiment 25 with 6 flat-face friction blocks 3.33 × 3.33 feet (2 

× 2 inches). It results in 56 percent of energy dissipation in case 26C. The energy 

dissipation due to friction block is the same without friction blocks  
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8.2.2   PRESSURE FLOW CONDITIONS 

1) Experiment 27 is the best option for the end slotted sill. This option  includes one 

4.17-foot slotted sill located at the end of the culvert. It was resulted in 60 

percent of energy dissipation in case 27C. 

2) Experiment 28 is Experiment 27 with an added 6 flat-face friction blocks 3.33 × 

3.33 feet (2 × 2 inches). It results in 60 percent of energy dissipation in case 28C. 

The energy dissipation due to friction blocks is negligible. 

3) Experiment 29 is the best option for the end sill. Experiment 29 includes one 5.00 

feet slotted end sill. It results in 56 percent of energy dissipation in case 29C, as 

shown in Table 44. 

4) Experiment 30 is Experiment 29 with 6 flat-face friction blocks 3.33× 3.33 (2× 2 

inches). It results in 60 percent of energy dissipation in case 30C. The energy 

dissipation due to friction block is 4%, as shown in Table 45.  

8.4 FRICTION BLOCKS ONLY 

 Several numbers and sizes of friction flat-faced friction blocks have been tested 

experimentally. It was found that friction blocks could not give sufficient energy 

dissipation by themselves, unless several larger friction blocks such as 5 × 5 feet (3 × 3 

inches), 6.67 × 6.67 feet (4 × 4 inches). These large friction blocks worked like a sill if 

more than 2 friction blocks were placed. Following are the best experiment options: 

1) For open channel flow conditions, Experiment 20 is the best option with 4, 5 feet 

 flat-faced friction blocks (FFFBs) height at the end of culvert, it results in 55 

 percent of energy dissipation in case 20C. 

2) For open channel flow conditions, Experiment 22 with 4, 6.67 x 6.67 feet flat-

faced friction blocks height at the end of culvert; it results in 61 percent of energy 

dissipation in case 22C, which increased the energy dissipation by 6%. 

Therefore, the optimal FFFBs height would be 5-foot FFFBs, and the increase in 

energy dissipation could be worth the extra cost. 
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3) For pressure flow conditions, Experiment 31 is the best option with 6, 3.33 feet 

 FFFBs height at 18 inches from the end of culvert, it results in 57 percent of 

 energy dissipation in case 31C. 

4) For pressure flow conditions, the best option is Experiment 32 with 2, 5 feet flat-

 faced friction  blocks height at the end of culvert; it results in 55 percent of energy 

 dissipation in case 32C, which is almost the energy dissipation as Experiment 31. 

 Therefore, the optimal FFFBs height can be 3.33-foot FFFBs, and could be the 

 most economical option. 
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9 Recommendations 

The following are the recommendations based on the results of the experiments: 

1) The slotted sill is recommended for use because of ease of cleaning drains faster 

and higher energy dissipation. 

2) Numerical model explores possibility flow of energy dissipation for any size of 

drop. Once the numerical modeling methodology is perfected, it can be used for 

any drop of broken-back culvert. Then it does not have to be for fixed 6, 12, 18, 

24, and 30 feet. 
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Appendix A - Laboratory Experiments for Hydraulic Jump 
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Figure A1. Experiment 1A 

 

Figure A2. Experiment 1B 

 

Figure A3. Experiment 1C 

 

 

Table A1. Experiment 1 using open channel flow conditions with 6” horizontal channel 

without any friction blocks 

 H.J. Run H Q Vu/s Ys Ytoe Y1 Y2 Yd/s Fr1 V1 V2 Vd/s L X ΔE THL E2/E1 

N 1A 0.8d 1.16 2.91 2.00 1.25 1.25 1.13 1.25 5.37 
9.8285 

P-tube 
- 

9.6911 

P-tube 
- - - 5.6263 - 

N 1B 1.0d 1.23 2.45 2.75 1.75 1.75 1.60 1.65 4.72 
10.2299 

P-tube 
- 

9.8285 

P-tube 
- - - 7.1187 - 

N 1C 1.2d 1.49 2.49 3.25 2.00 2.00 1.85 1.85 4.42 
10.2299 

P-tube 
- 

10.0312 

P-tube 
- - - 5.7457 - 
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Figure A4. Experiment 2A 

 

Figure A5. Experiment 2B 

 

Figure A6. Experiment 2C 
 

Table A2.  Experiment 2 using open channel flow conditions with 4” regular sill at 12” 

from the end with extended channel height of 12” 

 H.J. Run H Q Vu/s Ys Ytoe Y1 Y2 Yd/s Fr1 V1 V2 Vd/s L X ΔE THL E2/E1 

Y 2A 0.8d 0.9225 2.3063 2.13 1.75 1.75 8.50 2.80 4.07 
8.8214 

P-tube 

2.0720 

P-tube 

4.3340 

P-tube 
23.00 41.00 5.1689 17.4911 0.6005 

Y 2B 1.0d 1.2252 2.4502 2.50 2.00 2.00 9.50 3.00 4.06 
9.4101 

P-tube 

2.3166 

P-tube 

3.4749 

P-tube 
28.00 41.00 5.5510 19.8687 0.6015 

Y 2C 1.2d 1.4825 2.4708 3.35 2.13 2.13 9.75 4.00 4.11 
9.8285 

P-tube 

3.2762 

P-tube 

2.8373 

P-tube 
13.30 41.00 5.3262 20.8376 0.5960 
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Figure A7. Experiment 3A 

 

Figure A8. Experiment 3B 

 

Figure A9. Experiment 3C 

 

Table A3. Experiment 3 using open channel flow conditions with 3.5” regular sill at 20” 

from the end with extended channel height of 12”  

 H.J. Run H Q Vu/s Ys Ytoe Y1 Y2 Yd/s Fr1 V1 V2 Vd/s L X ΔE THL E2/E1 

Y 3A 0.8d 0.9354 2.3385 2.00 1.35 1.35 8.50 2.50 5.0918 
9.6911 

P-tube 

2.8373 

P-tube 

5.5550 

P-tube 
18.00 33.00 7.9635 15.5690 0.5017 

Y 3B 1.0d 1.2169 2.4338 2.85 1.75 1.75 9.75 3.00 4.5981 
9.9641 

P-tube 

3.0646 

P-tube 

5.9062 

P-tube 
20.00 33.00 7.5018 15.6037 0.5456 

Y 3C 1.2d 1.4958 2.4930 3.50 2.25 2.25 10.75 3.35 3.7712 
9.2664 

P-tube 

6.1292 

P-tube 

5.9062 

P-tube 
22.00 33.00 6.3475 16.5081 0.6359 
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Figure A10. Experiment 4A 

 

Figure A11. Experiment 4B 

 

Figure A12. Experiment 4C 

 

Table A4. Experiment 4 using open channel flow conditions with 3.5” regular sill at 20” 

from end with extended channel height of 12” with 15 FFFBs 19” from the toe 

 H.J. Run H Q Vu/s Ys Ytoe Y1 Y2 Yd/s Fr1 V1 V2 Vd/s L X ΔE THL E2/E1 

Y 4A 0.8d 0.9050 2.2625 2.25 1.50 1.50 8.75 2.50 4.8305 
9.6911 

P-tube 

3.6629 

P-tube 

5.4329 

P-tube 
17.00 33.00 7.2586 15.7538 0.5241 

Y 4B 1.0d 1.2251 2.4502 2.75 1.50 1.75 9.00 3.25 4.7208 
10.2299 

P-tube 

4.1763 

P-tube 

6.9498 

P-tube 
16.00 33.00 6.0489 12.8687 0.5341 

Y 4C 1.2d 1.5011 2.5018 3.50 1.85 2.00 9.00 3.50 4.5277 
10.4889 

P-tube 

5.1801 

P-tube 

6.6539 

P-tube 
16.00 33.00 4.7639 14.6163 0.5524 
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Figure A13. Experiment 5A 

 

Figure A14. Experiment 5B 

 

Figure A15. Experiment 5C 

 

Table A5. Experiment 5 using open channel flow conditions with 3.5” regular sill 20” 

from end with 6 FFFB 2” × 2” at 18” from the toe 

 H.J. Run H Q Vu/s Ys Ytoe Y1 Y2 Yd/s Fr1 V1 V2 Vd/s L X ΔE THL E2/E1 

Y 5A 0.8d 0.8644 2.1610 2.00 2.50 2.50 8.25 2.00 3.4641 
8.9722 

P-tube 

2.3166 

P-tube 

5.4329 

P-tube 
17.00 33.00 2.3044 16.1702 0.6758 

Y 5B 1.0d 1.1837 2.3674 2.75 2.00 2.00 9.25 2.50 3.9370 
9.1205 

P-tube 

5.0498 

P-tube 

5.7915 

P-tube 
19.00 33.00 5.1497 16.2943 0.6159 

Y 5C 1.2d 1.4361 2.3935 3.00 2.13 2.13 9.75 3.25 4.2790 
10.2299 

P-tube 

5.6745 

P-tube 

6.0187 

P-tube 
22.00 33.00 5.3262 16.2675 0.5777 
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Figure A16. Experiment 6A 

 

Figure A17. Experiment 6B 

 

Figure A18. Experiment 6C 

Table A6. Experiment 6 using open channel flow conditions with 3.5” regular sill 20” 

from end with 12 FFFB 2” × 2” at 18” from the toe 

 H.J. Run H Q Vu/s Ys Ytoe Y1 Y2 Yd/s Fr1 V1 V2 Vd/s L X ΔE THL E2/E1 

Y 6A 0.8d 2.9340 2.2293 2.00 3.99 2.75 8.75 2.25 2.6968 
7.3258 

P-tube 

4.0125 

P-tube 

5.4329 

P-tube 
17.00 33.00 2.2442 15.9760 0.7918 

Y 6B 1.0d 2.9108 2.3674 2.50 4.00 3.75 10.00 2.85 2.5298 
8.0250 

P-tube 

4.6332 

P-tube 

5.7915 

P-tube 
18.00 33.00 1.6276 15.9443 0.8197 

Y 6C 1.2d 1.4690 2.4483 3.50 4.50 4.00 11.25 3.50 2.5495 
8.3526 

P-tube 

5.4329 

P-tube 

6.1292 

P-tube 
20.00 33.00 2.1171 15.8170 0.8164 
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Figure A19. Experiment 7A 

 

Figure A20. Experiment 7B 

 

Figure A21. Experiment 7C 

 

Table A7. Experiment 7 using open channel flow conditions with 12 FFFB 2” × 2” at 26” 

from the toe 

 H.J. Run H Q Vu/s Ys Ytoe Y1 Y2 Yd/s Fr1 V1 V2 Vd/s L X ΔE THL E2/E1 

N 7A 0.8d 0.8962 2.2405 2.00 2.50 2.50 8.85 2.50 2.8636 
7.4168 

P-tube 

1.6381 

P-tube 

4.9143 

P-tube 
16.00 26.00 2.8932 16.7354 0.7618 

N 7B 1.0d 1.2038 2.4076 2.65 2.35 2.35 9.50 3.25 3.8037 
9.5516 

P-tube 

6.1292 

P-tube 

5.4329 

P-tube 
18.00 26.00 4.0932 16.3301 0.6309 

N 7C 1.2d 1.4554 2.4257 3.00 3.13 3.13 10.00 3.50 3.3200 
9.6216 

P-tube 

4.6332 

P-tube 

5.6745 

P-tube 
18.00 26.00 2.5898 16.7964 0.6941 
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Figure A22. Experiment 8A 

 

Figure A23. Experiment 8B 

 

Figure A24. Experiment 8C 

 

Table A8. Experiment 8 using open channel flow conditions with 4” regular sill at the 

end of culvert 

 H.J. Run H Q Vu/s Ys Ytoe Y1 Y2 Yd/s Fr1 V1 V2 Vd/s L X ΔE THL E2/E1 

Y 8A 0.8d 0.8736 2.1840 1.85 1.50 1.50 8.50 1.75 4.8990 
9.8285 

P-tube 

2.3166 

P-tube 

4.0125 

P-tube 
18.00 50.00 6.7255 18.9388 0.5181 

Y 8B 1.0d 1.2038 2.4076 2.75 1.75 1.85 9.65 2.50 4.2870 
9.5516 

Tube 

2.5900 

P-tube 

4.6332 

P-tube 
19.00 35.00 6.6455 18.5801 0.5769 

Y 8C 1.2d 1.4333 2.3888 3.00 1.85 2.00 10.35 2.25 4.3012 
9.9641 

P-tube 

2.8373 

P-tube 

4.4861 

P-tube 
22.00 36.00 7.0312 20.2633 0.5754 
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Figure A25. Experiment 9A 

 

Figure A26. Experiment 9B 

 

Figure A27. Experiment 9C 

 

Table A9. Experiment 9 using open channel flow conditions with 4” regular sill at the 

end with 15 FFFBs at 25” from the toe 

 H.J. Run H Q Vu/s Ys Ytoe Y1 Y2 Yd/s Fr1 V1 V2 Vd/s L X ΔE THL E2/E1 

Y 9A 0.8d 0.9354 2.3385 2.13 1.75 1.75 8.25 1.50 4.3425 
9.4101 

P-tube 

3.0646 

P-tube 

4.3340 

P-tube 
18.00 47.00 4.7554 18.8190 0.5711 

Y 9B 1.0d 1.2071 2.4142 2.75 1.75 1.85 9.50 2.00 4.5023 
10.0312 

P-tube 

4.3340 

P-tube 

4.7758 

P-tube 
21.00 41.00 6.3684 18.8360 0.5549 

Y 9C 1.2d 1.6765 2.7942 2.25 1.25 2.13 10.25 2.50 4.2790 
10.2299 

P-tube 

2.8373 

P-tube 

5.4329 

P-tube 
22.00 44.00 6.1306 18.6548 0.5777 
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Figure A28. Experiment 10A 

 

Figure A29. Experiment 10B 

 

Figure A30. Experiment 10C 

 

 

Table A10. Experiment 10 using open channel flow conditions with 4” regular sill at the 

end with 30 FFFBs at 25” from the toe 

 H.J. Run H Q Vu/s Ys Ytoe Y1 Y2 Yd/s Fr1 V1 V2 Vd/s L X ΔE THL E2/E1 

Y 10A 0.8d 0.9006 2.2515 2.00 1.50 1.50 8.50 1.50 4.5461 
9.1205 

P-tube 

2.0062 

P-tube 

4.0125 

P-tube 
18.00 52.00 6.7255 19.2446 0.5506 

Y 10B 1.0d 1.2396 2.4792 2.65 1.75 2.00 9.75 1.75 4.4159 
10.2299 

P-tube 

2.0062 

P-tube 

3.0646 

P-tube 
19.00 40.00 5.9677 21.6453 0.5636 

Y 10C 1.2d 1.4958 2.4930 3.00 2.13 2.00 10.25 2.00 4.3012 
9.9641 

P-tube 

3.0646 

P-tube 

5.1801 

P-tube 
21.00 43.00 6.8478 19.3581 0.5754 



 

124 

 

 

Figure A31. Experiment 11A 

 

Figure A32. Experiment 11B 

 

Figure A33. Experiment 11C 

 

 

Table A11. Experiment 11 using pressure flow conditions without sill or FFFBs 

 H.J. Run H Q Vu/s Ys Ytoe Y1 Y2 Yd/s Fr1 V1 V2 Vd/s L X ΔE THL E2/E1 

Y 11A 0.8d 0.8962 2.2405 2.00 1.50 1.50 1.25 1.50 5.2281 
10.4889 

P-tube 

10.0979 

P-tube 

9.8285 

P-tube 
- - - 3.2354 - 

Y 11B 1.0d 1.2137 2.4274 2.50 1.75 1.75 1.65 1.65 4.8990 
10.6160 

P-tube 

10.1904 

P-tube 

10.2299 

P-tube 
- - - 4.0979 - 

Y 11C 1.2d 1.5011 2.5018 3.35 1.65 1.75 1.75 1.85 4.8990 
10.6160 

P-tube 

10.2299 

P-tube 

10.3602 

P-tube 
- - - 5.0163 - 
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Figure A34. Experiment 12A 

 

Figure A35. Experiment 12B 

 

Figure A36. Experiment 12C 

 

 

Table A12. Experiment 12 using pressure flow conditions with 2.5” at the end  

 H.J. Run H Q Vu/s Ys Ytoe Y1 Y2 Yd/s Fr1 V1 V2 Vd/s L X ΔE THL E2/E1 

Y 12A 0.8d 0.9182 2.2955 2.13 1.35 1.20 8.88 2.50 5.4772 
9.8285 

P-tube 

4.9143 

P-tube 

- 

P-tube 
14.00 19.00 10.6275 21.2819 0.4646 

Y 12B 1.0d 1.2169 2.4338 2.75 1.75 1.65 10.60 3.00 4.7354 
9.9641 

P-tube 

4.6332 

P-tube 

4.0125 

P-tube 
19.00 26.00 10.2568 19.1037 0.5193 

Y 12C 1.2d 1.5011 2.5081 3.13 1.75 2.00 12.00 3.50 4.5277 
10.4889 

P-tube 

5.1801 

P-tube 

6.9498 

P-tube 
19.00 35.00 10.4167 13.8663 0.5323 
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Figure A37. Experiment 13A 

 

Figure A38. Experiment 13B 

 

Figure A39. Experiment 13C 

 

Table A13. Experiment 13 using pressure flow conditions with 2.5” sill 19” from the end  

 H.J. Run H Q Vu/s Ys Ytoe Y1 Y2 Yd/s Fr1 V1 V2 Vd/s L X ΔE THL E2/E1 

Y 13A 0.8d 0.9094 2.2735 2.00 1.50 1.35 9.26 2.50 5.0918 
9.6911 

P-tube 

2.8373 

P-tube 

2.5900 

P-tube 
15.00 18.00 9.8841 20.0131 0.4938 

Y 13B 1.0d 1.2071 2.4142 2.75 1.65 1.65 10.80 2.85 4.7990 
10.0979 

P-tube 

1.6381 

P-tube 

5.4329 

P-tube 
19.00 27.00 10.7551 16.70 0.5119 

Y 13C 1.2d 1.4137 2.3562 3.25 1.85 1.85 11.50 3.00 4.5619 
10.1641 

P-tube 

4.0125 

P-tube 

5.6745 

P-tube 
21.00 33.00 10.5500 17.2344 0.5328 
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Figure A40. Experiment 14A 

 

Figure A41. Experiment 14B 

 

Figure A42. Experiment 14C 

 

Table A14. Experiment 14 using pressure flow conditions with 2.5” sill 19” from the end 

with 15 FFFBs at 11” from the toe 

 H.J. Run H Q Vu/s Ys Ytoe Y1 Y2 Yd/s Fr1 V1 V2 Vd/s L X ΔE THL E2/E1 

Y 14A 0.8d 0.8736 2.1840 1.13 1.50 1.65 11.10 2.25 4.8928 
10.2952 

P-tube 

2.8373 

P-tube 

4.9143 

P-tube 
12.00 25.00 11.5251 16.9388 0.5011 

Y 14B 1.0d 1.2169 2.4338 2.50 1.75 1.75 11.52 2.75 4.7809 
10.3602 

P-tube 

4.4861 

P-tube 

5.3080 

P-tube 
12.00 25.00 11.5624 17.1037 0.5098 

Y 14C 1.2d 1.4137 2.3562 3.13 2.00 2.00 12.00 3.00 4.5277 
10.4889 

P-tube 

4.6332 

P-tube 

5.6743 

P-tube 
16.00 25.00 11.4443 17.2344 0.5323 
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Figure A43. Experiment 15A 

 

Figure A44. Experiment 15B 

 

Figure A45. Experiment 15C 

 

Table A15. Experiment 15 using pressure flow conditions with 2.5” sill 19” from the end 

with 30 FFFBs at 11” from the toe 

 H.J. Run H Q Vu/s Ys Ytoe Y1 Y2 Yd/s Fr1 V1 V2 Vd/s L X ΔE THL E2/E1 

Y 15A 0.8d 0.8736 2.1480 2.00 1.50 1.50 10.69 2.25 5.1640 
10.3602 

P-tube 

1.1583 

P-tube 

5.1801 

P-tube 
14.00 26.00 12.0939 16.4388 0.4789 

Y 15B 1.0d 1.2492 2.4984 2.50 1.75 2.00 12.00 3.00 4.5277 
10.4889 

P-tube 

4.2401 

P-tube 

5.6745 

P-tube 
12.00 25.50 10.4167 16.1631 0.5471 

Y 15C 1.2d 1.5117 2.5195 3.50 2.13 2.25 12.00 3.13 4.2164 
10.3602 

P-tube 

5.1801 

P-tube 

6.4492 

P-tube 
12.00 26.00 8.5820 15.5028 0.5961 
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Figure A46. Experiment 16A 

 

Figure A47. Experiment 16B 

 

Figure A48. Experiment 16C 

 

Table A16. Experiment 16 using pressure flow conditions with 1.5” sill 19” from the end 

and 2” sill at 27” from the end   

 H.J. Run H Q Vu/s Ys Ytoe Y1 Y2 Yd/s Fr1 V1 V2 Vd/s L X ΔE THL E2/E1 

Y 16A 0.8d 0.8962 2.2405 2.00 1.50 1.50 5.75 2.50 5.1446 
10.3213 

P-tube 

1.6381 

P-tube 

4.6322 

P-tube 
16.00 25.00 2.2251 17.2354 0.4974 

Y 16B 1.0d 1.2440 2.4008 2.50 1.85 1.85 5.75 2.65 4.6399 
10.2602 

P-tube 

3.6629 

P-tube 

5.3080 

P-tube 
12.00 25.00 1.3941 17.1740 0.5407 

Y 16C 1.2d 1.5091 2.5152 3.25 2.35 2.25 5.75 3.50 4.2426 
10.4247 

P-tube 

8.1412 

P-tube 

5.4329 

P-tube 
12.00 26.00 0.8285 17.3788 05816 
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Figure A49. Experiment 17A 

 

Figure A50.  Experiment 17B 

 

Figure A51. Experiment 17C 

 

 

 

Table A17. Experiment 17 using pressure flow conditions with 1.5” sill 19” from the end 

with 6 FFFBs 2” × 2” at 14” from the toe 

 H.J. Run H Q Vu/s Ys Ytoe Y1 Y2 Yd/s Fr1 V1 V2 Vd/s L X ΔE THL E2/E1 

Y 17A 0.8d 0.8736 2.1840 2.00 2.00 2.00 6.89 2.25 2.8284 
6.5524 

P-tube 

3.2762 

P-tube 

4.8317 

P-tube 
11.00 36.00 2.1203 17.0888 0.7804 

Y 17B 1.0d 1.2004 2.4008 2.75 2.50 2.50 10.08 3.25 3.2863 
8.5188 

P-tube 

2.3166 

P-tube 

4.9143 

P-tube 
10.00 36.00 4.3249 17.3240 0.7152 

Y 17C 1.2d 1.5170 2.5283 3.50 3.00 3.00 11.38 3.13 3.1885 
9.0466 

P-tube 

2.4626 

P-tube 

5.1801 

P-tube 
10.00 36.00 4.3035 18.2611 0.7412 
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Figure A52. Experiment 18A 

 

Figure A53. Experiment 18B 

 

Figure A54. Experiment 18C 

 

 

Table A18. Experiment 18 using pressure flow conditions with 6 FFFBs 2” × 2” at 19” 

from the end 

 H.J. Run H Q Vu/s Ys Ytoe Y1 Y2 Yd/s Fr1 V1 V2 Vd/s L X ΔE THL E2/E1 

Y 18A 0.8d 0.9094 2.2735 2.13 1.65 1.25 9.64 3.00 5.6214 
10.2952 

P-tube 

5.9062 

P-tube 

4.3340 

P-tube 
10.00 12.00 12.2683 17.2631 0.4490 

Y 18B 1.0d 1.2038 2.4076 2.65 2.00 1.75 11.46 2.65 4.7630 
10.3213 

P-tube 

7.6833 

P-tube 

4.0125 

P-tube 
10.00 12.00 11.4052 19.4301 0.5119 

Y 18C 1.2d 1.4878 2.4797 3.13 2.13 2.13 12.00 2.75 4.3605 
10.4247 

P-tube 

6.9498 

P-tube 

4.3340 

P-tube 
10.00 12.00 9.4044 20.0957 0.5731 
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Figure A55. Experiment 19A 

 

Figure A56. Experiment 19B 

 

 Figure A57. Experiment 19C 

 

Table A19. Experiment 19 using pressure flow conditions with 2 FFFBs 3” × 3” at the 

end of the culvert 

 H.J. Run H Q Vu/s Ys Ytoe Y1 Y2 Yd/s Fr1 V1 V2 Vd/s L X ΔE THL E2/E1 

Y 19A 0.8d 0.9182 2.2955 1.75 1.65 1.25 9.07 3.25 5.3666 
9.8285 

P-tube 

1.1583 

P-tube 

2.8373 

P-tube 
14.00 20.00 10.5383 19.0319 0.4721 

Y 19B 1.0d 1.2004 2.4008 2.50 1.75 1.65 10.54 3.50 4.7162 
9.9236 

P-tube 

1.3705 

P-tube 

4.6332 

P-tube 
14.00 20.00 10.1096 17.5740 0.5216 

Y 19C 1.2d 1.4958 2.4930 3.50 2.13 2.25 12.00 4.50 4.0552 
9.9641 

P-tube 

3.8417 

P-tube 

4.0125 

P-tube 
16.00- 37.00 8.5820 18.8581 0.5961 
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Figure A58. Experiment 20A 

 

  Figure A59. Experiment 20B 

 

 Figure A60. Experiment 20C 

 

Table A20. Experiment 20 using open channel flow conditions with 4 FFFBs 3” × 3” at 

20” from the end of culvert 

 H.J. Run H Q Vu/s Ys Ytoe Y1 Y2 Yd/s Fr1 V1 V2 Vd/s L X ΔE THL E2/E1 

Y 20A 0.8d 0.9396 2.3490 2.00 1.75 1.75 8.50 2.75 4.4078 
9.5516 

P-tube 

3.8417 

P-tube 

5.4329 

P-tube 
20.00 24.00 5.1689 15.5782 0.5644 

Y 20B 1.0d 1.2004 2.4008 2.50 2.00 2.00 9.50 3.00 4.4159 
10.2299 

P-tube 

2.1366 

P-tube 

5.7915 

P-tube 
21.00 25.00 5.5510 15.8240 0.5636 

Y 20C 1.2d 1.5117 2.5195 3.50 2.00 2.00 10.50 4.00 4.5277 
10.4889 

P-tube 

6.3443 

P-tube 

6.1292 

P-tube 
21.00 24.00 7.3110 15.3828 0.5524 
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Figure A61. Experiment 21A 

 

Figure A62. Experiment 21B 

 

 Figure A63. Experiment 21C 

 

Table A21. Experiment 21 using open channel flow conditions with 6 FFFBs 3” × 3” at 

8” from the end of culvert 

 H.J. Run H Q Vu/s Ys Ytoe Y1 Y2 Yd/s Fr1 V1 V2 Vd/s L X ΔE THL E2/E1 

Y 21A 0.8d 0.8827 2.2068 2.00 1.75 1.75 8.75 3.25 4.2426 
9.1937 

P-tube 

2.5900 

P-tube 

1.1583 

P-tube 
21.00 27.00 5.6000 20.2074 0.5816 

Y 21B 1.0d 1.2169 2.4338 2.50 1.85 1.85 9.50 3.25 4.5914 
10.2299 

P-tube 

3.2762 

P-tube 

2.0062 

P-tube 
22.00 34.00 6.3684 21.1037 0.4563 

Y 21C 1.2d 1.4824 2.4707 3.35 2.13 2.13 10.75 4.75 4.0246 
9.6216 

P-tube 

5.9062 

P-tube 

4.7758 

P-tube 
23.00 28.00 6.9932 17.3374 0.6058 
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Figure A64. Experiment 22A 

 

Figure A65. Experiment 22B 

 

 Figure A66. Experiment 22C 

 

Table A22. Experiment 22 using open channel flow conditions with 3 FFFBs 4” x 4” at 

the end of culvert 

 H.J. Run H Q Vu/s Ys Ytoe Y1 Y2 Yd/s Fr1 V1 V2 Vd/s L X ΔE THL E2/E1 

Y 22A 0.8d 0.9050 2.2625 2.00 2.25 2.25 9.00 2.50 3.6515 
8.9722 

P-tube 

1.1583 

P-tube 

2.3166 

P-tube 
20.00 40.00 3.7969 20.2538 0.6511 

Y 22B 1.0d 1.2169 2.4338 2.50 2.00 2.00 10.50 3.50 4.0620 
9.4101 

P-tube 

2.3166 

P-tube 

3.2762 

P-tube 
18.00 41.00 7.3110 19.6037 0.6015 

Y 22C 1.2d 1.4416 2..4027 3.50 2.50 2.50 11.00 4.00 3.9497 
10.2299 

P-tube 

2.3166 

P-tube 

3.2762 

P-tube 
20.00 39.00 5.5830 20.2757 0.6144 
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Figure A67. Experiment 23A 

 

Figure A68. Experiment 23B 

 

 Figure A69. Experiment 23C 

 

Table A23. Experiment 23 using open channel flow conditions with 3.5” slotted sill 20” 

from the end of culvert 

 H.J. Run H Q Vu/s Ys Ytoe Y1 Y2 Yd/s Fr1 V1 V2 Vd/s L X ΔE THL E2/E1 

Y 23A 0.8d 0.8827 2.2068 2.00 1.50 1.65 8.00 2.85 4.8305 
10.1641 

P-tube 

2.0062 

P-tube 

4.3340 

P-tube 
15.00 21.50 4.8494 17.3574 0.5241 

Y 23B 1.0d 1.2004 2.4008 2.65 1.85 1.85 9,25 3.25 4.5914 
10.2299 

P-tube 

4.3340 

P-tube 

4.6332 

P-tube 
20.00 22.00 5.9200 17.8240 0.5463 

Y 23C 1.2d 1.4985 2.4975 3.25 2.00 2.00 10.50 4.00 4.5277 
10.4889 

P-tube 

5.4329 

P-tube 

5.1801 

P-tube 
18.00 24.00 7.3110 17.3623 0.5524 
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Figure A70. Experiment 24A 

 

Figure A71. Experiment 24B 

 

 Figure A72. Experiment 24C 

 

Table A24. Experiment 24 using open channel flow conditions with 3.5” slotted sill 20” 

from the end with 6 FFFBs 2” × 2” at 18” from the toe 

 H.J. Run H Q Vu/s Ys Ytoe Y1 Y2 Yd/s Fr1 V1 V2 Vd/s L X ΔE THL E2/E1 

Y 24A 0.8d 0.9182 2.2955 2.00 1.65 1.65 8.50 2.50 4.5394 
9.5516 

P-tube 

4.0125 

P-tube 

5.1801 

P-tube 
16.00 33.00 5.7294 16.2819 0.5513 

Y 24B 1.0d 1.1938 2.3876 2.65 1.75 1.75 9.25 2.75 4.4401 
9.6216 

P-tube 

5.5550 

P-tube 

5.6745 

P-tube 
16.00 33.00 6.5154 16.3122 0.5611 

Y 24C 1.2d 1.4878 2.4797 3.50 2.00 2.13 10.50 3.50 4.2790 
10.2299 

P-tube 

5.1801 

P-tube 

6.4492 

P-tube 
15.00 29.50 6.5546 15.0957 0.5777 
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Figure A73. Experiment 25A 

 

Figure A74. Experiment 25B 

 

 Figure A75. Experiment 25C 

 

Table A25. Experiment 25 using open channel flow conditions with 4.5” slotted sill at 

the end of culvert 

 H.J. Run H Q Vu/s Ys Ytoe Y1 Y2 Yd/s Fr1 V1 V2 Vd/s L X ΔE THL E2/E1 

Y 25A 0.8d o.8872 2.2180 2.00 1.50 1.25 8.50 1.75 5.3666 
9.8285 

P-tube 

1.1583 

P-tube 

3.4749 

P-tube 
16.00 31.00 8.9665 19.7167 0.4799 

Y 25B 1.0d 1.1837 2.3674 2.50 1.75 1.65 9.25 2.50 4.8617 
10.2299 

P-tube 

1.6381 

P-tube 

4.1763 

P-tube 
16.00 31.00 7.1904 19.2943 0.5214 

Y 25C 1.2d 1.4852 2.4753 3.50 2.00 2.13 10.75 3.00 4.3335 
10.3602 

P-tube 

2.0062 

P-tube 

4.4861 

P-tube 
18.00 39.00 6.9932 19.5917 0.5720 
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Figure A76. Experiment 26A 

 

Figure A77. Experiment 26B 

 

 Figure A78. Experiment 26C 

 

Table A26. Experiment 26 using open channel flow conditions with 4.5” slotted sill at 

the end of culvert with 6 FFFBs 2” × 2” at 31” from the toe 

 H.J. Run H Q Vu/s Ys Ytoe Y1 Y2 Yd/s Fr1 V1 V2 Vd/s L X ΔE THL E2/E1 

Y 26A 0.8d 0.8962 2.2405 2.00 1.50 1.50 8.25 1.50 4.9666 
9.9641 

P-tube 

2.3166 

P-tube 

3.0646 

P-tube 
16.00 47.00 6.2131 20.4854 0.5122 

Y 26B 1.0d 1.2004 2.4008 2.75 1.75 1.75 9.50 1.75 4.7026 
10.1904 

P-tube 

2.8373 

P-tube 

3.2762 

P-tube 
18.00 49.00 6.9998 21.3240 0.5358 

Y 26C 1.2d 1.4825 2.4708 3.35 2.00 2.00 10.50 2.25 4.4159 
10.2299 

P-tube 

4.0125 

P-tube 

3.6629 

P-tube 
19.00 50.00 7.3110 21.5876 0.5636 
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Figure A79. Experiment 27A 

 

Figure A80. Experiment 27B 

 

Figure A81. Experiment 27C 

 

Table A27. Experiment 27 using pressure flow conditions with 2.5” slotted sill at the end 

of culvert 

 H.J. Run H Q Vu/s Ys Ytoe Y1 Y2 Yd/s Fr1 V1 V2 Vd/s L X ΔE THL E2/E1 

Y 27A 0.8d 0.8917 2.2293 2.00 1.50 1.50 9.60 2.50 4.7610 
9.5516 

P-tube 

3.8417 

P-tube 

3.1509 

P-tube 
11.00 13.00 9.1345 19.3760 0.5225 

Y 27B 1.0d 1.2038 2.4076 2.75 1.75 1.75 11.50 3.50 4.7809 
10.3602 

P-tube 

3.4749 

P-tube 

3.6629 

P-tube 
11.00 16.00 11.5624 19.0801 0.5098 

Y 27C 1.2d 1.4958 2.4930 3.25 2.13 2.25 12.00 4.00 4.1633 
10.2299 

P-tube 

3.2762 

P-tube 

6.9498 

P-tube 
13.00 20.00 8.5820 13.3581 0.5961 
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Figure A82. Experiment 28A 

 

Figure A83. Experiment 28B 

 

 Figure A84. Experiment 28C  

 

Table A28. Experiment 28 using pressure flow conditions with 2.5” slotted sill at the end 

of culvert with 6 FFFBs 2” × 2” at 28” from the toe 

 H.J. Run H Q Vu/s Ys Ytoe Y1 Y2 Yd/s Fr1 V1 V2 Vd/s L X ΔE THL E2/E1 

Y 28A 0.8d 0.9396 1.5660 2.13 1.65 1.50 10.10 1.75 4.9666 
9.9641 

P-tube 

3.0646 

P-tube 

3.0646 

P-tube 
12.00 40.00 10.5616 20.3282 0.4999 

Y 28B 1.0d 1.2004 2.0007 2.50 2.00 1.85 11.80 2.00 4.6499 
10.3602 

P-tube 

7.6833 

P-tube 

3.8417 

P-tube 
12.00 41.00 11.3198 20.3240 0.5218 

Y 28C 1.2d 1.4985 2.4975 3.50 2.13 2.25 12.00 2.50 4.3205 
10.6160 

P-tube 

8.1081 

P-tube 

5.4329 

P-tube 
16.00 44.00 8.5820 18.3623 0.5961 
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  Figure A85. Experiment 29A 

 

Figure A86. Experiment 29B 

 

 Figure A87. Experiment 29C 

 

Table A29. Experiment 29 using pressure flow conditions with 3” slotted sill 25” from the 

end of the culvert 

 H.J. Run H Q Vu/s Ys Ytoe Y1 Y2 Yd/s Fr1 V1 V2 Vd/s L X ΔE THL E2/E1 

Y 29A 0.8d 0.9268 2.3170 2.00 1.50 1.60 10.70 3.00 4.9054 
10.1641 

P-tube 

5.6745 

P-tube 

3.6629 

P-tube 
12.00 14.50 11.1143 18.3003 0.5020 

Y 29B 1.0d 1.1837 2.3674 2.50 1.85 1.75 11.80 3.00 4.8697 
10.5526 

P-tube 

4.6332 

P-tube 

3.8417 

P-tube 
12.00 16.00 12.3653 19.2943 0.4993 

Y 29C 1.2d 1.4985 2.4975 3.50 2.00 2.00 12.00 3.50 4.4721 
10.3602 

P-tube 

6.1292 

P-tube 

3.0646 

P-tube 
18.00 26.00 10.4167 21.1123 0.5471 
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Figure A88. Experiment 30A 

 

Figure A89. Experiment 30B 

 

 Figure A90. Experiment 30C 

 

Table A30. Experiment 30 3” slotted sill 25” from the end of model using pressure flow 

conditions with 6 FFFBs 2” × 2” at 18” from the toe 

 H.J. Run H Q Vu/s Ys Ytoe Y1 Y2 Yd/s Fr1 V1 V2 Vd/s L X ΔE THL E2/E1 

Y 30A 0.8d 0.8962 2.2405 2.00 1.85 1.85 11.40 2.75 4.5322 
10.0979 

P-tube 

5.9062 

P-tube 

4.9143 

P-tube 
14.00 27.00 10.2995 16.4854 0.5366 

Y 30B 1.0d 1.2169 2.4338 2.50 2.00 2.00 11.10 3.00 4.1833 
9.6911 

P-tube 

6.9498 

P-tube 

5.3080 

P-tube 
15.00 29.00 8.5088 16.8537 0.5790 

Y 30C 1.2d 1.4905 2.4842 3.50 2.25 2.25 12.00 3.50 4.1096 
10.0979 

P-tube 

7.4168 

P-tube 

4.3340 

P-tube 
17.00 29.00 8.5820 19.3499 0.5961 
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Figure A91. Experiment 31A 

 

Figure A92. Experiment 31B 

 

 Figure A93. Experiment 31C 

 

Table A31. Experiment 31 using pressure flow conditions with 6 FFFBs 2” × 2” at 18” 

from the toe  

 H.J. Run H Q Vu/s Ys Ytoe Y1 Y2 Yd/s Fr1 V1 V2 Vd/s L X ΔE THL E2/E1 

Y 31A 0.8d 0.8962 2.2405 1.75 1.25 1.25 9.70 2.75 5.6569 
10.3602 

P-tube 

4.9143 

P-tube 

4.6332 

P-tube 
10.00 12.00 12.5264 16.9854 0.4459 

Y 31B 1.0d 1.2267 2.4534 2.50 1.75 1.75 11.80 3.25 4.8697 
10.5526 

P-tube 

4.6332 

P-tube 

5.0754 

P-tube 
9.00 12.00 12.3653 17.0716 0.4993 

Y 31C 1.2d 1.4958 2.4930 2.50 2.13 2.13 12.00 3.25 4.4669 
10.6790 

P-tube 

2.5900 

P-tube 

5.6745 

P-tube 
13.00 14.00 9.4044 16.8581 0.5731 
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Figure A94. Experiment 32A 

 

Figure A95. Experiment 32B 

 

 Figure A96. Experiment 32C 

 

Table A32. Experiment 32 using pressure flow conditions with 2 FFFBs 3” × 3” at the 

end of culvert 

 H.J. Run H Q Vu/s Ys Ytoe Y1 Y2 Yd/s Fr1 V1 V2 Vd/s L X ΔE THL E2/E1 

Y 32A 0.8d 0.8962 2.2405 2.00 1.50 1.35 9.26 1.75 5.0918 
9.6911 

P-tube 

2.3166 

P-tube 

3.0646 

P-tube 
9.00 9.00 9.8841 19.7157 0.4938 

Y 32B 1.0d 1.2332 2.4664 2.50 1.75 1.75 11.66 2.25 4.8226 
10.4504 

P-tube 

3.0646 

P-tube 

4.1763 

P-tube 
11.00 13.00 11.9337 19.2872 0.5048 

Y 32C 1.2d 1.4958 2.4930 3.50 2.25 2.00 12.00 2.50 4.5277 
10.4889 

P-tube 

4.3340 

P-tube 

5.6745 

P-tube 
14.00 22.00 10.4167 17.8581 0.5471 
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Table A33. Open Channel and Culvert Flow Compared (Source: Singley and Hotchkiss 

2010). 
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